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CHAPTER I 

INTRODUCTION 

1.1 PROGRAM OBJECTIVES 

The objective of this research was to investigate coordination in hierarchical team decision making. 

Particular focus was placed on the identification and characterization of variables that enhance 

coordination and enable teams to maintain coordinated action under stressful conditions 

characteristic of naval tactical environments. 

1.2 RESEARCH PLAN 

The research plan described our strategy for meeting the program objectives and fulfilling the 

project tasks. Specifically, the research plan identified a series of research tasks. As documented 

in the quarterly progress reports, the research plan evolved several times during the duration of this 

effort. 

The.plan for the first two years of this research program was organized into three highly related 

research areas: 

(a) Analytical models of C3I organizations that incorporate coordination variables; 

(b) Descriptive models of team decision making; and 

(c) Prescriptive models of team decision procedures. 

As a result of progress in these areas, a fourth research area was introduced that integrated the 

approaches in areas (a) and (c): 

(d) Prescriptive models of adaptive C2 organizations. 

This area was a natural evolution of the research program and represented an effort to merge 

together results from the cognitive and the engineering aspects of the research; this is the natural 

next step towards the development of a theory of C2 organization design that encompasses both 

fixed and variable structures. 

1 



Each of these areas is discussed briefly below. A detailed discussion of the research 

accomplishments is provided in Chapter II to IV. 

The focus of the first area was the development of methodologies, models, theories and algorithms 

directed toward the derivation of tactical decision, coordination, and communication strategies of 

agents in organizational structures. Both fixed and variable organizational structures were 

considered. However, the focus was on modeling variable organizational structures and how 

those structures adapt under conditions of stress. The framework for this research is analytic. The 

following tasks addressed this research area: 

(1) Coordination in Decision Making Organizations 

(2) Design of Multilevel Hierarchical Organizations. 

The focus of the second area was the development of descriptive models of human decision 

making that are relevant to predicting team decision making performance under stress. For this 

work, it was assumed that the team members are well-trained. Consequently, the focus of the 

research was to identify conditions under which team performance degrades because one or more 

team members cannot effectively execute trained procedures properly. The following tasks 

addressed this research area: 

(3) Experimental Research to Evaluate Vulnerable-to-bias Decision Procedures 

(4) Quantitative Models of Combined User/Decision Aid Performance. 

The focus of the third area was to develop a prescriptive methodology for specifying team decision 

making procedures. This work combined the normative and descriptive research in the first two 
areas to develop a methodology for deriving a set of robust team decision procedures. This 

includes procedures for coordinating team decision making activities and adaptation of coordination 

procedures. The following two tasks were carried out. 

(5) Methodology for Prescribing Team Decision Procedures 

(6) Automated Tools for Specifying Decision Procedures 

The fourth area reflects an integration of the results obtained in the previous three research areas. 

Specifically, this research area addressed the problem of developing an integrated procedure that 

moves from an initial prescription of decision making procedures (research area c) to a detailed 

analytic model of the organization (research area a). To address this problem, that following 

research tasks were carried out: 
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CHAPTER II 

ON A METHODOLOGY FOR TEAM DESIGN USING 
INFLUENCE DIAGRAMS 

2.1 INTRODUCTION 

A team may be defined as a group of experts, with overlapping areas of expertise, that work 

cooperatively to solve decision problems. Command and control (C2) teams are a specific class of 

teams where: 
(a) each team member is responsible for an assigned set of tasks, 

(b) each team member is well trained for the tasks that he or she is to perform, 

(c) the team members have the common goal of satisfactorily solving the decision 

problems, 

(d) the decision problems addressed by the team are often severely time 

constrained, and 

(e) inappropriate decisions may lead to catastrophic consequences. 

In many organizations, the behavior of the teams within that organization is guided by a series of 

policy and procedure rules. Consider, for instance, air traffic control systems. The behavior of a 

ground control team is guided in large measure by a set of procedural rules that specify how the 
team should react to various circumstances. The procedure rules specify conditions for de-icing, 

rerouting, priorities for landing, etc. Policy rules, in turn, provide guidelines for the establishment 

of the procedure rules (e.g., In snow, aircraft should be de-iced no less than one half hour before 

takeoff.) 

A proposed set of rules for governing an organization's behavior can be evaluated in several 

different ways. One way is to evaluate them in terms of their logical consistency and 

completeness. Do the rules always result in a consistent recommendation, or can different rule 

subsets lead to different actions? Do they specify what to do under all circumstances? 

Alternatively, rules can be evaluated in terms of their executability. Although a rule set may be 

internally consistent, it may be difficult to define an acceptable architecture that can execute those 

rules (e.g., an architecture with efficient key threads.) 



Finally, one can look at the expected performance of a proposed rule set. It is generally recognized 

that performance evaluation presupposes a model of the set of decision situations that a team will 

face are specified. Consider, for instance, the issue of whether a hierarchical or distributed team 

structure is more effective. Clearly this depends on the situations the team will face. If the 

decision situations evolve rapidly, and there are many decision tasks that can be handled 

independently, then a distributed structure will do better. On the other hand, if the situations 

evolve slowly, and individual tasks need to be coordinated, then hierarchical control will do better. 

This suggests that the very concept of a well-designed team presupposes a domain model - a 

description of the decision situations. 

The basic philosophy behind the methodology is that domain models are not only useful for 

evaluating team decision procedures, but that they can also be used to derive team procedures. 

Specifically, given a domain model, one can derive team decision procedures that can be reliably 

executed by human team members and are nearly optimal in performance. 

The methodology described in this chapter aims at specifying the decision procedures of a team that 

addresses a repetitive or ongoing decision problem and at generating a team architecture that 

includes: 
(a) a well-defined team structure that identifies the functions each team member should 

perform arid the communication paths between team members, and 

(b) an assignment of well-defined tasks to each team member 

The methodology consists of the following steps: 

• Develop the domain model in form of an influence diagram. 

• Derive the Team Decision Procedures in form of a default tree (DTree). 

• For each path on the DTree from the root to a leaf, generate the set of fixed structures. 

A fixed structure is a Petri Net describing the sequence of items of evidence examined 

in this path. 
• Derive a set of candidate Functional Architectures. Each candidate is a Colored Petri 

Net (CPN) obtained by picking one member from each set of fixed structures and 

folding it with the others. 
• Check coordination constraints on the different members of the set to discard infeasible 

ones. 

• Map the set of candidate functional architectures onto a Physical Architecture to obtain a 

set of candidate Operational Architectures representing the team procedures. 

Performance Evaluation can be conducted on those candidates for the final selection. 



2.2 DEVELOP DOMAIN MODEL 

The initial step of the methodology is to develop a domain model. Domain models are represented 

using a decision theory formalism called an influence diagram or a decision network.1 A decision 

network provides both a graphic and mathematical description of the probabilistic relationships 

between objects, events, and decisions in a problem domain, as well an assignment of utilities to 

various outcomes (Neapolitan, 1990). Over the last decade, decision networks have emerged as a 

standard tool for eliciting and encoding probability and utility information. If properly structured, 

they minimize the number of probability and utility assessments required. 

Figure 2.1 An Influence Diagram 

A simple example of a decision network is shown in Figure 2.1. The circle nodes are chance 

nodes. Each chance node identifies a set of mutually exclusive and exhaustive propositions. The 

arcs between chance nodes identify the conditional probability statements that must be contained in 

each node. For instance, the node Typ contains the unconditional probability distribution P(Typ). 

The node A contains the conditional probability distribution P(AITyp). The rectangular node is a 

decision node. Each decision node identifies an exhaustive set of mutually exclusive decisions. 

Arcs going from a chance node to a decision node are information arcs. They identify information 

that will be available when the decision must be made. The diamond node is a value node. A 
value node assigns a utility to each row in the cross product of the propositions/decisions of its 

parent nodes. For instance, the node Val in Figure 2.1 assigns a utility for each possible decision 

in Dec and state in Typ. 

* Influence diagrams and decision networks are also referred to as decision graphs. Also, belief networks, Bayesian belief 
networks, and inference networks are specialized types of influence diagrams. 



Chance nodes that have information arcs going to a decision node are referred to as evidence 

items. An evidence item is instantiated when the value of that evidence item is known. For 

instance, A = al asserts that the evidence value for evidence item A is al. A set of evidence 

values for all evidence items is referred to as an evidence state. For instance, the vector 

<al, b2, c3> describes the evidence state where A = al, B = b2 and C = c3. 

Once a decision network has been defined, there are a variety of algorithms and software tools for 

processing the network (Buede, 1992). These algorithms can be used to derive the expected utility 

of any decision, or the posterior probability of any chance node conditioned on specific values for 

any subset of the chance nodes. Consequently, they can be used to evaluate the performance (in 

terms of utility) of any decision procedure. 

2.3 DERIVE TEAM DECISION PROCEDURE 

The second step is to derive an overall team procedure. Two general considerations are relevant 

here - performance and bounded rationality. If bounded rationality was not a consideration, then 

one could simply require that the team uses the domain model to derive the maximum expect utility 

choice for each input situation. Of course, this is humanly impossible. Consequently, one must 

either allocate the decision processing to a computer or find decision procedures that are easier to 

execute, but approximate the performance of expected utility maximization. For those decisions 

that we are unwilling to allocate to machines, it is necessary compile the domain model into a set 

of humanly-executable decision procedures. 

Lehner and Sadigh (1993) have developed several algorithms for compiling domain models into 

simple decision procedures. These algorithms will compile an influence diagram into a structure 
called a default tree (DTree). A DTree is composed of default nodes (Dnodes) and evidence nodes 

(Enodes). Each Dnode specifies a decision, while each Enode specifies both an evidence item and 

a decision. To illustrate, the DTree in Figure 2. 2 contains 4 Enodes and 6 Dnodes. This DTree 
corresponds to a decision procedure which begins by either selecting dl or examining evidence 

item A. If A is examined and its value is a2, then the decision dl is immediately selected. If 

A = al, then d2 is selected or B is examined. If B = bl, then the decision dl is selected, else if 

B = b2 then d2 is selected. Returning to the root Enode, if A = a3 then select d3 or examine C. 

If C = cl, then select dl. If C = c2 then select d3 or examine B. If B = bl, then select d2, 

otherwise select d3. 
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Figure 2.3 Deterministic DTree Derivation 

In a deterministic DTree, each root or subroot corresponds to a item of evidence to be examined. 

According to the value of this evidence, another item of evidence is examined until a conclusion (a 

"leaf of the tree) is reached. The deterministic DTree provides in fact an answer to the following 

question: according to the current item of evidence, what is the next item of evidence which needs 

to be looked at? This means that to reach a conclusion, it may not be necessary to look at all the 

items of evidence. The item of evidence at the root of the tree will always be looked at first because 
it represents the one bringing the highest utility to the organization. An example is given in Figure 
2.4. The organization has to decide whether a specified object is an Enemy (En), a Friend (Fr) or 

Neutral (Ne). To reach the conclusion, three different items of evidence can be looked at: (1) R (for 

example, Radar) that can take values Rl, R2, or R3, (2) P (for example, passive sensor) that can 

take values PI or P2, and (3) Q (for example, report from intelligence) that can take values Ql, Q2 

or Q3. An input to the organization is represented by a 3-tuple (r, p, q) where r (resp. p, q) is the 

value of the item of evidence R (resp. P, Q). Let assume that the input to the organization is (R3, 

P2, Q2). Item of evidence R is at the root of the tree and is examined first. Its value is R3 and 

according to the DTree, the next item of evidence to look at is Q. Its value is Q2 and the conclusion 

that the object is an Enemy can be reached. To reach this conclusion, the item of evidence P has not 

been examined. 

10 
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stage model is considered: Situation Assessment, Information Fusion (this stage aggregates the IF, 

TP and CI stages of the five stage model) and Response Selection 

We assume that each FDMU knows initially (at its SA stage) only the value of the item of evidence 

that is assigned to it. Then, it receives in its IF stage the values of other items of evidence from 

other FDMU. In its RS stage, it decides if a conclusion can be reached or if it has to send its 

evidence set to the FDMU in charge of the next item of evidence to look at (as specified by the 

DTree). A FDMU can be represented by a Petri Net as shown in Figure 2.5. 

Figure 2.5 Three Stage Model of a FDMU 

Each item of evidence represents an input to the organization; each value taken by the different 

items of evidence induces a path in the DTree from the root to one of the leaves. Each path to a 

conclusion defines therefore a specific set of interactions between the different FDMU that leads to 

a conclusion. A fixed functional structure can then be defined for each path from the root to a leaf 

of the tree. 

Two approaches were considered for generating the set of fixed structures : 
• Use of the Lattice Algorithm (Remy and Levis, 1988), 

• Direct derivation of fixed structures. 

2.4.1 The Lattice Algorithm 

The Lattice Algorithm allows for the automatic generation of candidate architectures satisfying a set 

of connection constraints and of structural constraints. The candidate architectures (which are 

numerous) are not listed singly but gathered in lattices defined by their maximal and their minimal 

elements: the maximally and minimally connected architectures (MINOs and MAXOs). Each 

candidate architecture belongs to one of the lattices and can be defined by adding simple paths to 

the MINO or subtracting simple paths from the MAXO. The initial implementation of the algorithm 

by Remy (1986) was limited to five decision making units. 

12 



The input is a set of connection constraints represented by matrices: e (input to FDMU), s (FDMU 

to output), F (SA to IF stages), G (RS to SA stages), H (RS to IF stages), and C (RS to CI 

stages). The user enters in each ceil of the different matrices either "1" if he wants the 

corresponding connection to exist, "0" if he does not, or "2" if the corresponding link is optional. 

From the interaction constraints entered by the user in the different matrices, the algorithm 

generates two Petri Nets: the Kernel Net corresponding to the structure deduced from the 

connection matrices where all the optional links are considered inactive and the Universal Net 

corresponding to the structures where all optional links are considered active. In a second stage, 

the algorithm computes the S-invariants of the Universal Net and stores those that contain the 

source place and the sink place (the simple paths). In a third stage, MINOs are generated by adding 

simple paths stored in the second stage to the Kernel Net until all the structural constraints are 

satisfied. Remy (1986) has defined four basic structural constraints: 

Rl The structure should be connected 

R2 The structure is acyclical (no loop) 
R3      There exists at most one link from the RS stage of DMi to the SA, IF, CI stages of 

DMj: Gij + Hy + Cij < 1 

R4      Information Fusion takes place only at the IF and CI stages. The SA stage has at most 
one input with preference to the external input: ej + Gjj < 1 

In a fourth stage, MAXOs are generated by removing simple paths from the Universal Net until 

none of the constraints are violated. Finally, the algorithm computes the invariants of the different 

MINOs and MAXOs to check the absence of loops. If there is a loop, the corresponding MINO or 

MAXO is discarded. 

In this problem, the number of FDMUs is the number of items of evidence considered in the path 

from the root to a leaf of the DTree. All the FDMUs receive an input, therefore all the cells of e 

contain "1". To leave complete flexibility on which FDMU generates the output of the 
organization, "2" is assigned to each cell of s. On the other hand, the CI stage has been suppressed 

in the FDMU; therefore, all the cells of C contains 0. Finally, since the SA stage of a FDMU can 

receive only one input (because of the structural constraint R4) and that input is from a source, 

there can not be any connection between the RS stage of a FDMU and the SA stage of another 

FDMU: the cells of matrix G contain "0". To represent the sequence of items of evidence examined 

in a path from the root to a leaf of the DTree, the following rules are applied: 
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• If FDMU1 is responsible for examining the item of evidence at the root of the DTree 

and FDMUi is responsible for examining the next item of evidence in the path, the cell 
Fii has to contain "1". The other cells of matrix F contain "2", 

• If FDMUi and FDMUj are responsible for two successive items of evidence in the 
sequence represented in the path, the cell Hy has to contain "1". Once all the 

successive items have been considered, the remaining cells of matrix H are assigned 

the value "2". 

For the example described earlier, let us generate a functional fixed structure for the input (R3, Ql, 

PI). Only items of evidence R3 and Ql are used to reach the conclusion and therefore only two 

FDMUs need to be considered. The set of connection constraints could be as shown in Figure 2.6. 

e: ext -> SA s: RS -»ext 
R 0 R 0 
1 1 2 2 

F: SA -» IF G:RS- .SA 
R Q R Q 

R X l R X Ö 
Q 2 X 0 0 X 

H: RS -> IF C: RS -> CI 
R 0 R 0 

R X 2 R X Ö 
Q 2 X 0 0 X 

Figure 2.6 Connection Matrices for Input (R3, PI, Q1/Q2/Q3) 

Running the Lattice Algorithm for this set of connection constraints shows that all the feasible fixed 

structures are gathered in lattices with two MINOs and two MAXOs. The Petri Nets are displayed 

in Figure 2.7. 

All feasible fixed structures are obtained by adding Simple Paths to either of the MINOs. In this 

example, there are twenty feasible structures to choose from. The selection is made according to 

some criteria (degree of redundancy, or the number of inter-FDMU exchanges, for example) but as 

the number of items of evidence increases, the number of inputs increases and the number of 

feasible structures for a given input increases exponentially. The architecture designer might have 

to add connection constraints to reduce the number of solutions. 
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MIN01 

SA-R 

output 

MIN0 2 

SA-R IF-R RS-R 

output 

MAX01 

SA-R IF-R RS-R 

output 

MAX0 2 

SA-R IF-R RS-R 

output 

Figure 2.7 MINOs and MAXOs for Input (R3,P1,Q1/Q2/Q3) 
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satisfy the structural constraints. There is a need then to determine which redundant interactions 

has to remain in the set of fixed structure for this specific path on the DTree. For the example, the 

connection constraints are shown on Figure 2.10. Running the Lattice Algorithm on this.set of 

constraints leads to one MINO (the direct derived structure) and one MAXO displayed in Figure 

2.11. This MAXO includes additional interactions that enhance survivability. 

0-4 SA o 
Root FDMU producing a conclusion 

Root FDMU unable to produce a conclusion and sending its information to another FDMU 

Non-root FDMU producing a conclusion 

Non -root FDMU unable to produce a conclusion and sending its information to another FDMU 

Figure 2.8 Different Kinds of FDMUs 
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SA-R 

output 

Rl,Pl,Ql:Ne 
Rl,Pl,Q2:Ne 
Rl,Pl,Q3:Ne 

SA-R 

output 

Rl.P2.Ql: ft 
Rl,P2,Q2:Fr 
Rl,P2,Q3:Fr 

SA-R 

output 

RZPl,Ql:Eh 
R2,Pl,Q2:Eh 
R2,Pl,Q3:Eh 
R2,P2,Ql:En 
R2,P2,Q2:En 
R2,P2,Q3:Eh 

SA-R 

output 

R3,Pl,Ql:Ne 
R3,Pl,Q2:Eh 
R3,Pl,Q3:Fr 
R3,P2,Ql:Ne 
R3,P2,Q2:FJI 
R3,P2,Q3:Fr 

Figure 2.9 Set of Fixed Structure for the Example 
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ext -> SA RS -»ext 
R 0 R Q 
1 1 1 ö 
F 

SA^IF 
G 

RS-+SA 
R Q R 0 

R X i R X ö 
Q 2 X 0 Ü X 

H 
RS-+ IF 

c 
RS-» CI 

R 0 R 0 
R X 2 R X ö 
0 2 X 0 Ö X 

Figure 2.10 Connection Matrices for Input (R3, PI, Q1/2/3) to Generate Superstructures of the 

Direct Derived Structure 

SA-R IF-R RS-R 

output 

Figure 2.11 MAXO of the Superstructures of the Direct Derived Structure 

2.5 FOLDING OF FDCED STRUCTURES FOR CANDIDATE FUNCTIONAL 

ARCHITECTURES DERIVATION 

Once all the fixed structures for every path in the DTree are constructed, one has to pick one 

member of each set and fold with the others into a single structure depicting the functionality of the 

entire tree. The structure so obtained is a variable structure. Let us recall that the Fixed Structures 

were represented as Ordinary Petri Nets. Ordinary Petri Nets can be simulated with tokens that are 

undistinguishable. Since a fixed structure represents the sequence of processes that take place for a 

single event type, Ordinary Petri Nets were sufficient to represent these structures. In addition, the 

mathematical description of Ordinary Petri Nets is sufficient for the Lattice Algorithm. When the 
fixed structures are folded together, the events must retain their identity and be distinguishable. 
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Colored Petri Nets allow to do so. Colored Petri Nets are an extension of Ordinary Petri Nets in 

which tokens are no longer indistinguishable, but have attributtes (colors). A token is an element of 

a given color set and can only take the values defined by the color set. A place can only contain 

tokens of a given color set. Arcs are annotated to specify the number and the color of tokens that 

that the arc can carry. This arc expression can contain "if-then-else" or "case" statements to model 

alternate behaviors of a transition according to different combinations of tokens present in its input 

places. Colored Petri Nets are therefore suitable to represent the variable structures obtained by 

folding together fixed structures. 

A number of candidate variable structures can be obtained as a result of different folding patterns. 

The most intuitive one is to superimpose all FDMUs responsible for the same item of evidence 

across the different fixed structures. The folded Colored Petri Net for the example is shown in 

Figure 2.12. Note that the transitions are represented now by boxes with inscriptions. 

pOO 
Evid o 1"(r,P.q) 

1'(r,PU,QU) 

P11 

♦5- 
1(r,PU,QU) 

it (r=R3) 
then 1-(R3,PU4>U) 
else empty 

too 

i-mi.pi.Q2> 

P12 
Evid 

O 

"\ 
if (r=R2) then 1" En else empty 

if(r=R1) 
thenV(R1,PU,QU) 
else empty 

1'(R1,PU,QU) 

p212 
Evid 

p22 
Evid 

p342 
Evid 

O •Ö 
p6 

• Decis 

1'(RU,p,QU)   r(RU,p,QU)        1'(RJ,p,QU)   1(RU,p,QU)        1(R1,p,QU)    1'(R1,p,QU) 

U 
p13 
Evid -o- 

p213 
Evid 

p23 

if(P=P1) 
then1'(R1,P1,QU) 
else empty 

1"(r,p,QU) 

V(RU,PU,q)     V(RU,PU,q) 

p23 p343 
___ Evid W Evid g—o—4a—o— 
1 'l'(RU,PU,q)   1(RU,PU,qj ' 1{r,p,q) 1(r,P.q) 

«if (p=P2) 
then 1Fr 
else empty 

case q of 
Q1 => 1Ne 

IQ2=> if(r=R3) 
thenVEn 
eteeVNe 

IQ3=>1Fr 

color R = with R1 I R2 I R3 IRU; 
color P = with P1 I P2 I PU 
color Q = with Q1 I Q2 I Q3 I QU; 
color Evid = product R * P' Q; 
color Decis = with Fr I Ne I En I Ur 
var r: R; 
var p: P; 
varq: Q 

Figure 2.12 Folded CPN for the Example 
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2.6 COORDINATION CONSTRAINTS 

As mentioned in the previous section, fixed structures are generated for each path from the root to 
the terminating leaves of the DTree. The set of fixed structures so constructed represents the 

feasible Functional Architectures required to carry out a particular task /rule described by the path 

of the DTree. In order to derive a set of candidate Functional Architectures for the entire DTree, 

one member from each set of fixed structures is picked and folded into a single Colored Petri Net 

(variable) structure. The process is repeated until all such variable structures are constructed. But 

not all folded structures so obtained represent feasible Functional Architectures. In order to be a 

feasible variable structure, a folded structure must satisfy the Coordination Constraint. A detailed 

description of the coordination constraint is given in Chapter IV. 

A component (represented as a transition in Petri Net formalism) is said to meet the Coordination 

Constraint if it is not required to respond differently for inputs which are indistinguishable to the 

task. A variable structure is said to meet the Coordination Constraint if all its components meet the 

Coordination Constraint. A structure satisfying the constraint is feasible in the sense that it can be 

realized, and consequently can be mapped on a Physical Architecture. 

The need for checking variable structures obtained by folding ordinary Petri Net structures was 

first pointed out by Demael (1989). The problem presented by Demael was formulated analytically 

by Lu and Levis (1992). They proposed an algorithm which, given a set of fixed structures for 

each input situation (represented by the item of evidences inducing a single path in the DTree) and a 

folding strategy, checks each component of the folded net to determine whether it satisfies 

Coordination Constraint. Once all components are found to satisfy the constraint, the folded 

structure associated with the folding scheme is declared feasible. For a detailed and rigorous 

discussion on the algorithm, see Lu (1992). The following paragraph presents an illustration of the 

idea. 

The Colored Petri Net of Figure 2.12 represents a feasible variable structure since all the transitions 

in the structure meet the Coordination Constraint; none of them is required to respond differently 

for input situations indistinguishable to it. However, if the first fixed structure represented by the 

Ordinary Petri Net of Figure 2.9 is replaced by the one of Figure 2.13 and the same folding 

strategy is employed, then the variable structure represented by the Colored Petri Net of Figure 

2.14 (with annotations suppressed) is obtained. Note that the structure in Figure 2.13 is a feasible 

fixed structure; however, the variable structure obtained in Figure 2.14 does not satisfy the 

Coordination Constraint. The argument on infeasibility is given as follows: 
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The transition SA-R in structure of Figure 2.13 is required to send its assessed information to IF-P 

and IF-Q whenever it gets Rl as the input item of evidence. Note (by definition) that the transition 

SA-R can only distinguish among the elements of the alphabet R, it can not distinguish PI from P2 

and so on. However, the same transition SA-R in the second fixed structure of Figure 2.9 is 

required to send information only to IF-P under the inputs that are identical to the inputs in the 

previous case if seen by SA-R , thus introducing a requirement that can not be satisfied by the 

transition. Therefore, if these fixed structures are folded together in a manner that all SA-R stages 

are folded into a single transition in the variable structure, the resulting variable structure will be 

infeasible and can not be realized. 

SA-R 

output 

SA-Q IF-Q RS-Q 

Figure 2.13 Fixed Structure for Inputs (Rl, PI, Q1/Q2/Q3) 

SA-R 

SA-Q IF-Q 

output 

RS-Q 

Figure 2.14 Infeasible Variable Structure 
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2.7 OPERATIONAL ARCHITECTURE DERIVATION 

Once a variable structure is selected, the functional architecture is converted into the operational 

architecture, which is also represented as a Colored Petri Net, as follows. 

Not all input places in the variable structure represent physical sources of information, i.e., 

sensors. As mentioned earlier, the output of a sensor can be a vector, where each element/ attribute 

takes the value from an evidence alphabet; the alphabet of the sensor, in such case, is a set of 

different alphabets. In order to construct a physical architecture, the places associated with the 

alphabets, which in turn are the elements of an alphabet associated with a physical entity, are 

compounded together. Compounding refers to folding different parts of a single structure. Once all 

such places are compounded together, these places now represent the physical sources of 

information. Figure 2.15a shows the simplified Colored Petri Net representation of a variable 

structure with three input sources of evidences, P (passive), Rl (speed) and R2 (bearing), where 
Rl and R2 are the elements of the output vector from ä sensor R (radar). Figure 2.15b shows the 

compounding of the two sources into one physical source R. 

R1*R2*P 

Oil 

a) 

R*P 

Ol 

b) 

P SA VJF RS 

vO+OtOKV pe P 

Figure 2.15 Compounding Input Sources 
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The processes obtained from the first step can now be assigned to different physical entities. At 

this point, processes in series can be assigned to a single physical entity. Function allocation across 

processes could only be done by folding. 

An operational architecture represents the processes executed by the different team members and 

their interactions for the right execution of the mission assigned to the team. This operational 

architecture is derived from the functional architecture by defining the boundaries of the extent of 

responsibilities of each team member. In the example, a simple function allocation algorithm is to 

allocate the processes of each FDMU to a single human decision maker. The resulting operational 

architecture is shown on Figure 2.16 (arc annotations have been removed for clarity ) and is 

derived from the variable structure of Figure 2.14 by representing by the means of round boxes the 

extent of responsibility of each team member. 

Figure 2.16 Operational Architecture for the Example 

A number of function allocation algorithms can be applied at this point, where each algorithm is a 

function of a different parameter or a combination of parameters. Workload, available resources, 

multilevel relationships among organization members, the probability mass function of the DTree, 

are some examples of the parameters of the function allocation algorithms that can be considered. 

Section 2.8 describes a procedure to compute the workload associated with the algorithms to be 

used as the basis for allocation of functions to decision makers. 
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The use of different function algorithms leads to different candidate operational architectures that 

need to be evaluated for the selection of the most effective one. Each Colored Petri Net 

representation of the candidate operational architectures can be refined by adding resource places to 

each team member, showing the number of different inputs a decision maker can process 

simultaneously and by modifying the interaction links to include communications protocols and 

dynamic communication resources allocation. The different nets can then be simulated to show (1) 

that the DTree is correctly implemented and (2) to generate time-related measures of performance 

(response time, throughput) that can be used as the basis for the final selection of the operational 
architecture. 

2.8 WORKLOAD EVALUATION FOR ALLOCATION OF FUNCTIONS TO DECISION 
MAKERS 

Boettcher and Levis (1982) have developed an evaluation of the Human Decision Maker workload 

based on Information Theory. Using entropy H as the measure of the uncertainty in a random 
variable w* that takes values Wy and where: 

H(wi) = - £ p(wij) log p(Wij) 
j 

the total information processing activity of a decision maker, G may be expressed as: 

G = X H(wi) (2) 
i 

where wj's are all the variables handled by the decision maker. 

This total workload may be decomposed (Conant, 1976) in the following way: 

G = Gt + Gb + Gc + Gn 

The throughput or information transmission Gt is given by: 

Gt = T(x:y) = H(y)-Hx(y) 

where Hx(y) is the conditional entropy of y given x. 

The term Gc, the coordination is a measure of interconnectedness and may be expressed as: 

Gc = T(wi: w2:...: wn :y) 
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The noise Gn is the entropy remaining in the internal variables and the output y when the input x is 

fully known: 

Gn = Hx(wi, w2 ..., wn , y) 

Finally, the blockage Gb 

Gb = Ty(x : wi: ...: wn) 

is the information in the input that is not in the output. 

The application of information theory in the computation of human workload requires the 

assumption that the model is memoryless. 

The bounded rationality represents the fact that the workload should not exceed some threshold so 
that rapid degradation of performance does not occur. It can be expressed in the following form: 

G / x < F0 

that is, the information processing rate must be less than some threshold Fo that depends on the 

task and the individual decision maker. This model of bounded rationality has been investigated 

experimentally by Louvet et al., (1988). 

The workload induced by a function is computed as follows. The first step is to identify the 

variables of the function, their relationships and the values each of these variables can take. In a 

second step, for a scenario of a distribution of inputs, the distribution of the values taken by the 

variables is computed through simulation. Then the entropy of each variable is computed using 

equation (1). The total workload induced by the function is then evaluated using equation (2). 

To make sure that the bounded rationality constraint is satisfied, one can compute, for a given 

scenario of inputs with a given distribution of occurrence, the workload induced by the different 

functions represented by transitions in the Colored Petri Net model of the functional architecture. 

The allocation strategy is therefore to assign functions to decision makers so that the total workload 

induced by the set of the different functions allocated to a decision maker satisfies the bounded 
rationality constraint. Instead of producing only one candidate architecture, this procedure will 

discard candidate architectures in which the bounded rationality constraint is violated for one or 

more decision makers. 
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It is important to point out that the total workload induced by two sequential functions is not equal 

to the sum of the workload induced by each function. The output of the first function which is the 

input of the second function becomes an internal variable whose entropy needs to be counted only 

once. Figure 2.17 illustrates this point. Fl and F2 are two sequential functions. Fl has x for input 

and produces the output x!2. F2 has for inputs xi2 and z and produces the output y. If Hint(Fl) 

and Hint(F2) are the sums of the entropies of the internal variables of Fl and F2, and WF1 and 

Wp2 denote the workload induced by Fl and F2 for a distribution of inputs, we have: 

WF1 = H(x) + Hint(Fl) + H(x12) 

WF2 = H(x12) + H(z) + Hint(F2) + H(y) 

If Fl and F2 are allocated to the same decision maker, the workload induced by these two 

functions, WFI+F2» is : 

WF1+F2 = H(x) + Hint(Fl) + H(x12) + H(z) + Hint(F2) + H(y) 

and therefore: 

WF1+F2 = WF1+WF2-H(x12) 

Figure 2.17 Two Sequential Functions Fl and F2 

For problems of interest, the algorithms Fl and F2 are simple enough to compute the distributions 

of the variables handled by the decision makers. The formulas for each case are computed in the 
next sections. 
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2.8.1 Situation Assessment for the Evidence Item at the Root of the DTree 

The generic algorithm for the SA stage for the item of evidence at the root of the tree is displayed 

on Figure 2.18. Starting with the input El, a value is attributed to the variable C according to rule 

of the DTree. The value of El is transmitted to other FDMU, if the value of C is Ci, for i < n. If the 

value of C is Cn + 1, the decision of the organization is produced. 

El 

I 
C = Sort(El) 

C = Cl   /C = Ci     C = Cn\     ^^C = Cn + 1 

(SA1-»IF2) = El   - (SAl->IFi) = El      •••   (SAl-> IFn) = El  Decision = D(Ei) 

Figure 2.18 Generic Algorithm for the SA Stage for the Evidence Item at the Root of the DTree 

The expression for the workload induced by the SA stage function, WSAroot is: 

WsAroot = H(Ei) + H(C) + £ H(SAi -> IFi) + H(Decisionl El) 

2.8.2 Situation Assessment for Evidence Items that are not at the Root of the DTree 

The algorithms used in this case is the idenyity; it copies the data provided by the sensor as shown 

in Figure 2.19. 

Ei ► & 

Figure 2.19 Generic Algorithm for the SA Stage for Evidence Items not at the Root of the DTree 

The expression WSAi for the workload induced by the SA stage function for items of evidence that 

are not at the root of the tree is therefore: 

WSAi = 2H(Ei) 
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2.8.3 Information Fusion 

This algorithm combines pieces of evidence to build tuples as shown in Figure 2.20. The 

assumption is that there exists only one buffer in which all the information transmitted by other 

FDMUs is stored until processed. The tuple (El, ..., Ei-1, Ei+1, ..., En) represents the 

information transmitted by other FDMUs. Some of the Ej's can have an unknown value 

(El,..., Ei-1, Ei+1,..., En) 

Ei ■>(E1,..., En) 

Figure 2.20 Generic Algorithm for the IF Stage 

The expression for workload induced by the IF stage of the FDMU dealing with the evidence item 

Ei, WiFi, is therefore: 

WIFi = H(Ei) + H(E1, ..., Ei-1, Ei+1, ..., En) + H(E1, ..., En) 

2.8.4 Response Selection 

The generic algorithm for the RS stage for the item of evidence Ei is displayed in Figure 2.21. 

Given the input (El,..., En), it consists in attributing a value to the variable C according to rule of 

the D-Tree. The value of (El,..., En) is transmitted to other FDMUi if the value of C is Ci. If the 

value of C is Cn + 1, the decision of the organization is produced. 

(El,..., En) 

i 
C = Sort(El,..., En) 

C = C1 C = Cj  \C = Cn\C = Cn+l 

(RSi-»IFl) = ...      (RSi->IFj) = ...     (RSi-»IFn) =      Decision = 
(El,...,En) (El En) (El, ...,En) D(E1, ...,En) 

Figure 2.21 Generic Algorithm for the RS Stage 
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The expression for workload induced by the RS stage of the FDMU dealing with the evidence item 

Ei, WRSl, is therefore: 

WRSi = H(Ei,..., En) + H(C) + £H(RSi->IFj) + H(Decisionl(Ei,..., En)) 

Let us now derive the expressions for the workload for the example described in this chapter: 

SA-R: 

The variable R takes a value Rl, R2, or R3. If R = Rl, Rl is sent to the FDMU in charge of the 

evidence item P; if R = R2, the decision of the organization, En is derived; if R = R3 then R3 is 

sent to the FDMU in charge of evidence item Q. We have: 

H(SA-R -> IF-Q) = 0 

H(SA-R ->IF-P) = 0 

H(Decision I R2) = 0 

H(C) = H(R) 

Therefore, we have: 

WSA.R = H(R) + H(C) = 2H(R) 

SA-P: 

We have the simple expression: 

WSA-P = 2H(P) 

SA-Q: 

We have the simple expression: 

WSA-Q = 2H(Q) 

IF-P: 

Since the FDMU in charge of evidence item P receives only Rl from other FDMU, we have: 

H(R, Q) = H(R1, Qunk) = 0 

and therefore: 

WIF.P = H(P) + H(R1, P, Qunk) 
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IF-Q: 

The FDMU in charge of evidence item Q receives information from the other FDMUs. Therefore, 

we have: 

WIF.Q = H(R, P) + H(Q) + H(R, P, Q) 

RS-P: 

This function has for input (Rl, P, Qunk). If P = PI the information (Rl, PI) is sent to the FDMU 

in charge of evidence item Q; if P = P2 then the organization's decision is derived: Friend. We 

have therefore: 

H(C) = H(R1, P, Qunk) 

H(RS-P -> IF-Q) = 0 
H(Decision I (Rl, PI, QU)) = 0 

and therefore: 

WRS-P = H(R1, P, Qunk) + H(C) = 2 H(R1, P, Qunk) 

RS-Q: 

The FDMU in charge of evidence item Q does not communicate its information to other FDMUs. 

We have therefore: 

WRS.Q = H(R, P, Q) + H(C) + H(Decision I (R, P, Q)) 

The distributions of the variables of the algorithms executed inside the functions are computed as 
follows. For each variable, the possible values that this variable can take are identified and a real 

number initialized to 0 is associated with each value. A scenario of inputs having a certain 

probability distribution is defined and used to simulate the set of functions. Each time an input, 

with probability of occurrence p, is processed, some of the variables inside the functions are used 

and instantiated to a value, some others are not. The real number associated with the value taken by 

each instantiated variable is then increased by p. When all the inputs have been processed, the 

probability distribution of each variable can be deduced by normalizing the real value associated 

with each value the variable can take. If the variable X can take a value xi, X2,..., or xn and r(xO 

is the real value associated with the value x, of variable X, we have: 

n/Y-vV-   r(xi) 
p(X = xi) = — 

£r(xj) 
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The computation of the distribution of the values taken by the variables of the algorithm executed 

inside the different functions can be done within the Colored Petri Net formalism. This is done by 

instrumenting the Colored Petri Net representation of the Functional Architecture and requires the 

definition of additional color sets and functions for the computation of entropy as well as the use of 

hierarchical pages for a more detailed implementation of these algorithms. Figure 2.22 displays the 

modified global declaration node containing the pertinent functions and color sets. 

definetime int start 0; 
color Trigger = with trig timed; 
color R = with Rl I R2 I R3 I RU ; 
var r: R; 
color P = with PI I P2 I PU ; 
var p : P; 
color Q = with Ql I Q2 I Q3 I QU; 
var q : Q; 
color Datalnp = product R*P*Q; 
color inpid = int; 
var i: inpid; 
color prob = real with 0.0 .. 1.0; 
var prO, prl, pr2, pr3:prob; 
color Evid = product inpid*DataInp*prob; 
color Decis = with Fr I En I Ne I U; 
var d: Decis; 
color dist = product DataInp*prob; 
color choice = with cl I c2 I c3 I c4 I c5 I c6 I c7 I c8 I c9 I clO ; 
var c: choice; 
color cdist = product choice*prob; 
color decdist = product Decis*prob; 
color problist = list prob; 
var pi: problist; 
color Entropy = real; 
val ln2 = In 2.0; 
fun plogp 0.0 = 0.0 

I plogp(p:real) = ~p * ln(p) / ln2; 
fun addlist nil = 0.0 

I addlist ((p::pls)) = p+addlist( pis); 
fun divlist (s:prob) (l:prob) = 1/s; 
fun normlist pl:problist = 

let val su = addlist(pl) 
in if su=0.0 then pi 

else map (divlist(su)) pi 
end; 

fun H(pl:problist) = addlist(map plogp pi); 

Figure 2.22 Modified Global Declaration Node for the Computation of Entropy of Variables 

The color set "Evid" has been modified to take into account the probability distribution of the 

inputs and to distinguish between them. It is a product "inpid" (ID number of the input), "Datalnp" 
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(the value of the different evidence item R, P and Q) and "prob" (the probability of occurrence of 

the input). The color set "choice" taking values cl, c2, ... clO is used to represent the internal 

variables of the algorithms and their values. The color sets "dist" and "cdist" are used to store the 

real values associated with the values taken by the evidence items (as perceived by each FDMU) 

and internal variables throughout the net. The color set "problist" is a list of reals and represents in 

a single token the different real values associated with the possible values taken by a variable. The 

function "normlist" is applied on such a list to compute the probability distribution of the variable. 

The functions "plogp", and "addlist" are used in the function "H" to compute the entropy of a 

variable using formula (1). 

Figure 2.23 shows how the instrumentation has been implemented for the function SA-R. The 

transition SA-R in Figure 2.12 is now a substitution transition, whose decomposition is displayed 

in Figure 2.23. 

Trigger 1JW"' Trigger . ytrii; 8+200 
Vtriae+100 \Jl'trig»[iOOl1'tri8*t2POO 1-trig8+100 Q-rtri0arinn] 

1 trig 

Trigger 

•(H(normlist(pl))) 

1'1.585 

1'(cpr1) 

if (c=c2) then 1'En else empty 

1(i,(r,PU,QU),proT~1-(i,(r,PU,aU),prO)      r(i,(r,PU,QU),ptO) 
((r=R1)andalso(ca:1)) 
orelse 
((r=R2)andalso(c=c2)) 
orelse 
((r=R3)andalso(crf3)) 

if(0=C3) 
then 1'(i,(R3,PU,QU),prO) 
else empty 

\      P6 
j« Decis 

Cl8J  6'Fr+11'En+ 
^"^   1'Ne 

if (c=d) 
then1"(i,(R1,PU,QU),prO) 

empty 

Figure 2.23 Decomposition of Function SA-R 

The function SA-R is performed in two steps. The first one is takes into consideration the input as 

represented by the transition "input". The place with color set "dist", which forms a self-loop with 
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this transition, is used to store the real value associated with each possible input R. The initial 

marking of this place is the multi set containing all possible inputs that can be seen by the FDMU 

with the associated real value initialized to 0. When an input has to be processed, say 

(Rl, PU, QU) with a probability of occurrence of prO, the corresponding token ((Rl, PU, QU), 

prl) (where prl is the current real value of (Rl, PU, QU)) is removed from the place dist and is 

replaced by the token ((Rl, PU, QU), prl+prO) where the real value of (Rl, PU, QU) has been 

updated. 

The second step is the selection of a course of action according to the value of the input R and is 

represented by the transition "choice". The internal variable used in this process is c and it can take 

the value cl, c2, or c3. In a similar manner as before, the real values for the possible values of this 

variables are computed. 

The operations necessary for computation of the entropy of the different variables begin at time 

100, when all the possible inputs has been processed by the organization. The transitions just 

above the place with color sets "dist" and "cdist" fire as many times as there are tokens in those 

places to build lists of reals that represents the distribution of the real values of the values taken by 

the variable under consideration. At time 200, when the construction of the list is over, the second 

transition can fire to generate the entropy value by applying the function H(normlist()) on the 

derived list of reals. The list of reals is first normalized to ensure that the sum equals one. Then, 

the function H is applied on this normalized list to compute the entropy. 

The other functions of the model have.similar representation. The model has been executed for a 

scenario in which the 18 possible inputs have the same probability of occurrence (-0.055). The 

results are listed below. 

SA-R: H(R) = 1.585 bits/symbol 

H(C) = 1.585 bits/symbol 

WSA.R = H(R) + H(C) = 3.170 bits/symbol 

SA-P:     H(P) = 1.0 bits/symbol 

WSA-P = 2 H(P) = 2.0 bits/symbol 

IF-P:      H(P) = 1.0 bits/symbol 

H(R1, P, Qunk) = 1-0 bits/symbol 
WIF.p = H(P) + H(R1, P, Qunk) = 2.0 bits/symbol 
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RS-P:     H(C) = H(R1, P, Qunk) = 1.0 bits/symbol 

WRs.p = H(R1, P, Qunk) + H(C) = 2.0 bits/symbol 

SA-Q:    H(Q) = 1.585 bits/symbol 

WSA-Q = 2 H(Q) = 3.170 bits/symbol 

IF-Q:     H(R,P) =0.918 bits/symbol 

H(Q)= 1.585 bits/symbol 

H(R,P,Q) = 2.503 bits/symbol 

WIF-Q = H(R,P) + H(Q) + H(R,P,Q) = 5.006 bits/symbol 

RS-Q:    H(R,P,Q) = 2.503 bits/symbol 

H(C)= 1.891 bits/symbol 

H(Decision I (R, P, Q)) = 1.352 bits/symbol 

WRS.Q = H(R, P, Q) + H(C) + H(Decision I (R, P, Q)) = 5.746 bits/symbol 

If the functions performed by a FDMU are all allocated to a single decision maker, we have: 

WR = WSA-R = 3.170 bits/symbol 

WP = WSA-P + Wip.p + WRS.p - H(P) - H(R1, P, Qunk) = 4.0 bits/symbol 
WQ = WSA.Q + WIF.Q + WRS-Q - H(Q) - H(R, P, Q) = 9.834 bits/symbol. 

If we assume that an input has to be processed every 0.5 second and that the bounded rationality 
constraint threshold Fo is equal to 18 bits/symbol/s, we have: 

WQ /1 = WQ / 0.5 = 19.668 bits/symbol/s 

which is larger than Fo . The bounded rationality constraint is violated. This means that all the 

functions performed by the FDMU in charge of the evidence item Q can not all be allocated to a 
single decision maker. 

Other function allocation strategies are: 

• SA-Q is allocated to a decision maker and IF-Q and RS-Q to another one, 

• SA-Q and IF-Q are allocated to a decision maker and RS-Q to another one. 

Such function allocation strategies do not violate the bounded rationality constraint. 

35 



A procedure has been presented for instrumenting the Colored Petri Net representation of the 

Functional Architecture of an organization implementing the decision procedures of a DTree. This 

instrumentation is used to evaluate the workload induced by the different functions and to check 

whether a proposed strategy for allocating functions to decision makers violates the bounded 

rationality constraint. The critical parameter Fo needs to be evaluated independently through pilot 

experiments as described in Louvet, et al., (1988). 

2.9 CONCLUSION 

The methodology described in this chapter addresses the design of teams which have to make 

decisions under conditions of stress and uncertainty. It is a prescriptive methodology that specifies 

how to design a team architecture that allows for the application of team decision procedures that 

are executable by human teams under high stress conditions. From an influence diagram, which is 

a model of the domain in which the team will act, team decision procedures are derived. These 

decision procedures are represented by a default tree. Each path from the root to a leaf of the 

default tree corresponds to a sequence of evidence items that have to be examined to reach a 

conclusion. For each path, a set of fixed structures that models functionally, using Petri Nets, the 

processes and interactions that have to take place to reach the conclusion is derived. Then, one 
member from each set is picked and folded with the others to generate a variable functional 

architecture represented as a Colored Petri Net. From this functional architecture, different team 

operational architectures are derived by allocation of tasks to resources. A procedure to guide this 

allocation process, based on the human workload induced by the functions performed by each 

decision maker, is presented. The interesting aspect of this procedure is that the workload can be 

evaluated by expanding the Colored Petri Net model of the Functional Architecture. Finally, the 

derived Operational Architectures can be simulated to generate measures of performance that are 

used as the basis for the final selection of the team design. 

In the next Chapter, we address the question of how to derive team decision procedures from an 

influence diagram. 
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CHAPTER III 

DERIVING DECISION PROCEDURES 

As stated in Chapter II, the first step in the team design process is the derivation of the team's 

overall decision procedure. This chapter summarizes the work performed on this effort that 

directly addresses this issue. Section 3.1 describes a class of algorithms for deriving decision 

procedures that a human team can be expected to execute in real time under conditions of 

significant stress and uncertainty. The basic idea is to compile a domain model, represented as an 

influence diagram, down to a set of simple decision procedures, where the expected performance 

of the decision procedures can be predicted precisely from the influence diagram. Section 3.2 

examines the issue of how complex a team's decision procedures must be before they are "near- 

optimal". More specifically, the analysis attempts to determine classes of decision problems for 

which simple, humanly-executable decision procedures exist that are near-optimal from problems 

where near-optimal decision making requires some form of automated support. Such information 

is essential for determining appropriate team architectures. Finally, section 3.3 examines 

psychological issues related to the viability of some types of team decision procedures. We argue 

that even if a team's decision procedures are computationally simple, some procedures are more 

likely than other procedures to break down (i.e., be executed incorrectly) when team member are 

operating under stress condtions. A psychological basis for this position is presented and an 

experiment testing this hypothesis is reported. 

3.1 COMPILING INFLUENCE DIAGRAMS 

3.1.1 Introduction 

There is a growing recognition that Bayesian decision theory provides a powerful foundation upon 

which to develop automated and partially automated reasoning systems. Decision theory provides 

a compelling semantics for inference and action under uncertainty, as well as a framework for 

evaluating the adequacy of heuristic methods. The use of Bayesian techniques is now common 

place in a number of research areas, including inference (e.g., Pearl, 1987), planning (e.g., Dean 

and Wellman, 1991), and learning (e.g., Paass, 1991). 

Most applications of Bayesian techniques involve problems that require repeated processing of 

similar cases. A typical example is medical diagnosis, where the objective is to use symptoms and 
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test results to select the affliction affecting the patient. In such problems, a belief network is 

constructed that encodes a joint probability distribution over a preselected set of conclusions 

(affliction), evidence items (symptoms and diagnostic tests), and intermediate hypotheses. If 

decisions and outcome values are included, the network becomes an influence diagram. In an 

influence diagram all possible decisions, and the utility of each decision conditioned on a subset of 

the evidence items and hypotheses, are explicitly represented. Constructing a good influence 

diagram involves a substantial knowledge engineering effort. However, once developed, the 

influence diagram can be used repeatedly to address decision problems which differ in the pattern 

of evidence that is observed. 

There are many decision domains that involve repeated processing of similar problems in time 

constrained settings. Many examples are found in the command and control arena (sensor 

interpretation, object identficiation, IFF, etc.). In principle, such tasks are good candidates for the 

application of influence diagrams. However because of the time constraints, real time processing 

of influence diagrams is required; as well as real time understanding and (where appropriate) 

acceptance by users the results of this processing. 

Unfortunately, as shown by Cooper (1990), the computational complexity of computing posterior 

probabilities in a belief network is NP-Hard. This implies that the computational effort required to 

select optimal decisions using an influence diagram is at least exponential with the size of the 

diagram. Consequently, in order to realistically apply Bayesian decision theory to time constrained 

problems, computationally simpler procedures must be developed that approximate exact Bayesian 

reasoning. Furthermore, there are many decision tasks that people may not wish to delegate to 

machines (e.g., decision involving life-or-death outcomes). For such decisions, decision making 

procedures are needed that are humanly-executable, or at least easy enough to understand so that a 

decision making could effectively use them in a decision aid (see Lehner and Zirk, 1987, and 

Lehner, et al., 1991, for discussion of user understanding and decision aid usefulness). 

Previous researchers have explored three distinct approaches to approximate, rapid processing of 

influence diagrams. The first is to use simulation algorithms that generate approximate solutions in 

polynomial time (e.g., Henrion, 1988). The second (e.g., Dean and Wellman, 1991) is to 

partition the reasoning problem into a series of incremental reasoning steps, and to estimate the 

computational burden involved before each step is executed. If there is insufficient time to execute 

the next step, the current solution is offered as an approximation. Unfortunately, both of these 

approaches generate decision procedures that are not executable by people, or easy for people to 

understand. 
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A third approach is to "compile" an influence diagram into a set of simple decision procedures and 

to apply those decision procedures at execution time. This approach can be used to generate 

decision procedures that people can execute. Heckerman, et al., (1989) addresses the problem of 

compiling influence diagrams by generating decision rules that specify, for each evidence state, the 

maximum expected utility decision. One of compilation approaches proposed by Heckerman, 

et al., is to develop a situation-action tree in which evidence items are sequentially examined until 

sufficient evidence is accumulated to warrant a decision. In this report, we develop two 

procedures for generating situation-action trees, and characterize their optimality and computational 

complexity properties. 

3.1.2 Compilation Algorithms 

Figure 3.1 depicts an influence diagram. The root node H contains the system's hypotheses. It 

and the other circle nodes are chance nodes. Each chance node contains a finite number of states 

with the conditional probability distribution over these states for each possible combination of 

states of its parent nodes. For example, the arc from node H to B shows the conditional 

probability of P(B = bi I H = hj) for each state hj in node H and state bi in node B. Rectangle 

nodes are decision nodes. These nodes contain a set of possible choices. The double line arcs are 

information arcs. They indicate which information will be available at the time one of the choices 

in the decision node must be selected. The chance nodes that "feed" a decision node in this way 

are referred to as evidence nodes. In Figure 3.1, for instance, the state of chance nodes B, E, and 

F will be known when the choice in Dec must be selected. The diamond node is the value 

nodewhere it assigns a utility to each row in the cross product of the propositions/decisions of its 

parents nodes. In Figure 3.1, the utility of the choice selected in Dec depends only the state of H. 

In this report, chance nodes that have information arcs going to a decision node are referred to as 

evidence items. An evidence item is instantiated when the value of that evidence item is known. 

For instance, E = el asserts that the evidence value for evidence item E is el. A set of evidence 

values for all evidence items is referred to as an evidence state. For instance, the vector 

<bl, e2, f3> describes the evidence state where B = bl, E = e2 and F = ß. 

Once an influence diagram has been defined, there are a variety of algorithms and software tools 

for processing the network (Buede, 1992). These algorithms can be used to derive the expected 

utility of any decision, or the posterior probability of any chance node, conditioned on specific 

values for any subset of the chance nodes. 
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Figure 3.1. An Influence Diagram 

Default Trees 

We define a default tree (DTree) as a tree composed of default nodes (Dnodes) and evidence nodes 

(Enodes). Each Dnode specifies a decision, while each Enode specifies both an evidence item and 

a decision. To illustrate, the DTree in Figure 3.2 contains 4 Enodes and 6 Dnodes. This DTree 

corresponds to a decision procedure where the decision maker begins by either selecting dl or 

examining evidence item E. If A is examined and its value is e2, then the decision dl is 

immediately selected. If E = el, then the decision maker selects d2 or examines B. If B = bl, then 

the decision dl is selected, else if B = b2 then d2 is selected. Returning to the root Enode, if 

E = e3 then d3 is selected or F is examined. If F = f 1, then dl is selected. If F = f2 then d3 is 

selected or B is examined. If B = bl, then d2 is selected, otherwise d3 is selected. 

Unless otherwise noted, we will assume that processing of a DTree continues until a Dnode is 

reached. That is, the evidence item associated with an Enode is always examined and the decision 

associated with an Enode is never selected. 

Dnodes are partitioned into two types. A Dnode is closed if the path leading to the Dnode contains 

all the evidence items available. A Dnode is open, if it is not closed. Note that an open Dnode 

represents a default decision, since it specifies decisions that could change if additional evidence is 

examined. 

More formally, we can characterize a DTree as follows. Let ID be an influence diagram which 

contains decision nodes {Dj} and evidence nodes {Ej}.  Let DT be a DTree that contains the nodes 
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{Nj}.  Each member of {Nj} is an open Dnode, a closed Dnode, or an Enode.  The following 

functions are defined with respect to ID. 

pathm(Ni) - The set of evidence values in the ancestors of Nj. 

{E,d1> 

{B,d2}    j      {>, 

1 d1    {B,d3} 
/b1 \b2 

62 d3 

Figure 3.2 A Default Tree (DTree) 

For example, if we order the node in Figure 3.2 left-to-right breadth-first, then N5 is the left-most 

Dnode andpathiyrQis) = {E = el,B = bl}. 

evid-pathjyr(Ni) - The evidence items that are listed in the ancestors of Nj (e.g., 

evid-path-Dj(Ns) = {E,B}). For the root node, evid-patfiDj = {}. 

dec\yr(pathoT(N[)) - The maximum expected utility decisions in ID given the evidence 

item values leading to Ni. That is, decDT(pathDj(NO) = maxdc[EU(dc I path(N0], 

where dc is a set that specifies all possible combinations of decisions for the decision 

nodes in ID (e.g., deeviipathmiNs)) = {dl}). 

Let d be an open Dnode in the DTree DT and E an evidence item. We say that the expansion of d 

with E in DT is the DTree that results from replacing the Dnode d with the Enode {E,d}, and 

adding Dnodes for each possible value of E. Each new Dnode contains the maximum expected 

utility decisions. If Es is a sequence of evidence values, followed by an evidence item, then the 

expansion sequence of d with Es in DT is the DTree that results by starting at d and sequentially 

expanding DT with the evidence items in Es. For instance, the expansion of d with 
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Es = {Ei=el,E2 = e2, E3} 

is obtained by replacing d with the expansion of d with Ej, then replacing the Dnode at Ei = el 

with the expansions of that Dnode with E2, and then replacing the Dnode at E2 = e2 with the 

expansion of that node with E3. An expansion subtree is composed of one of more expansion 

sequences that have the effect of adding a subtree to the DTree. An expansion set is composed of 

multiple expansion subtrees. 

£V0J'DT(E I path(NO) = The increase in expected utility for examining evidence item E 

given the path to N\. Formally, 

evoiDT(Elpath(Nj)) = 

(IeeEP(E = e I/?a^DT(ND)-EU[^cDT({E = e} upathDT(Nd)]) 

- E\J[decDT(pathDT(Ni)]. 

max-evoim(N[) - The evidence item, E, for which evoi-Qi(E I pathvr(Ni)) is 

maximal. 

eu-expandi>T(Ni,Es) - The increase in the expected utility of DT that is obtained by 

replacing decm(path(N\)) with the expansion subtree Es in DT. 

It is easily shown that if Es contains a single evidence node (E), then 

eu-expandm(Ni,E) = P(patfiDT(Ni)>evo/DT(E I path(NO). 

If Es is an expansion subtree, then define mean-eu-expandj)j(E&) to be the mean value of the 

individual eu-expanavr values for the evidence items in Es. 

Definition 3.1 DT-compile: A DTree (DT) DT-compiles an influence diagram (ID) iff 

every evidence state in ID will lead to a Dnode in DT. 

The DTree in Figure 3.2 DT-compiles the influence diagram in Figure 3.1. 

Theorem 3.1 DTree Expected Utility: If a DTree (DT) DT-compiles an influence diagram 

ID, then the expected utility of the DT, with respect to ID, is 

EU(decDTO) + SN€ Enodes(DT) eu-expandm(N,e), 

where e is always set to the evidence item at N. 

42 



Proof: (By induction) 

Let {N;} be a list of the Enodes in DT ordered in a manner that is consistent with partial 

ordering induced by the arcs in DT. Let {Nj}m be a subset of the first m Enodes in 

{Nj}. Each {Nj}m corresponds to a DTree. By definition, 

EU({Njh) = eu-expand(Ni) + EV(dec()). 

Assume that EU({Nj}m) = SNS {Nj }m eu-expandm(N). 

Again by the definition of eu-expand 

EU({Nj}m+i) = EU({Nj}m) + eu-expandm(Nm+\). 

Deriving DTrees 

The following algorithm can be used to derive a sequence of increasingly complex DTrees. 

Algorithm DD 

I. Let Ni be a Dnode containing only decmQ- 

II. Iterate through the following procedure 

A. Select the Open Dnode and evidence item for which eu-expandoj is 

maximal. Call this node N. 

B. Set N equal to the Enode {max-evoii)T(N), decui(path£>jQ$))) 

C. For each possible value (e) of max-evoi-Dj(N) add as a subnode to N the 

Dnode decDj(pathi)T(N) u {max-evoijyr(N) = e}). 

D. Check stopping criterion. If Stop, then exist with current DTree. 

E. Go to A. 

In words, DD iteratively replaces a default decision with the evidence item that maximizes the 

increase in the expected utility of the DTree, and adds as new subnodes the Dnodes that correspond 

to the best decisions for each possible value of that evidence item.2 This algorithm is consistent 

with the situation-action tree development algorithm described informally in Heckerman, et al.„ 

(1989). 

2 Obviously, the efficiency of DD could be increased substantially by recording the results of the evoi calculations 
and keeping track of open and closed Dnodes. However, efficiency improvement will not change the order in which 
the DTree is expanded. Consequently, they are not presented here. 
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DD is a greedy algorithm. At each iteration, it expands the DTree by adding and expanding the 

node that has the greatest increase in the expected utility of the DTree. We refer to such expansions 

as greedy expansions. Although DD is a greedy algorithm, it has two useful optimality properties. 

Theorem 3.2 Local optimality of DD: Each Enode added by DD is a locally optimal 

extension in that if DTx and DTy are both one step expansions of DT, then 

EU(DTx) > EU(DTy). 

Proof: 

This follows immediately from Theorem 3.1 and the fact that DD always selects the 

maximum eu-expand expansion. 

To further characterize the optimality properties of DD, the following definitions are offered. 

Definition 3.2 Optimal DTree: DT* is an optimal DTree iff EU(DT*) >_EU(DT) for each 

DTree (DT) where DT has no more Enodes than DT*. Also, DT* is an optimal expansion 

of DT iff DT* is an expansion of DT and DT* is an optimal DTree. 

Definition 3.3 E-descending: DT is an E-descending DTree iff for every open Dnode (D), 

and evidence item (E), 

P(path(D))evoim(E I path(D)) > P(path(D) u {e\})evoim(£ \path(D u {ei})), 

where {ej} is any set of evidence values. 

In words, a DTree is E-descending if it is impossible to increase the eu-expand value of an 

evidence item by making it the last element in some expansion sequence. 

Theorem 3.3 Optimal Dnode selection: Let DT and DT* be any DTrees where DT is E- 

descending, DT* is an expansion of DT, and DT* is optimal. If {d} is the set of Dnodes in 

DT with the maximum eu-expand value, then DT* contains an expansion of a node in {d}. 

Proof: 

PL Let d be a Dnode in DT and Ei,..., En the evidence items available at d ordered by 

their evoi value. From this ordering, it follows that 

eu-expand(E\ I path(d)) >_eu-expand(E{ I path(d)) for i > 2. 
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From E-descending it follows that eu-expand(E\ I path(d)) > 

eu-expand(E{ I path(d) u {ej})) for all {ej}. 

From transitivity it follows tha.t.eu-expand(Ei I path(d)) is greater than the 

eu-expand value of an E-node in any subtree rooted at d. 

P2. Let d' be a member of {d}. From PI and transitivity, it follows that 

eu-expand(E\ I path(d')) is greater or equal to the eu-expand value of any E-node 

in any subtree rooted at an open Dnode in DT. 

P3. Let DT* be any expansion of DT that does not contain an expansion of a Dnode in 

{d}.   From P2 it follows that all Enodes in DT', that are not in DT, have an 

eu-expand value that is strictly less than eu-expand(E\ I path(d')). Consequently, 

a DTree which is the same as DT* except that it replaces a terminal Enode with the 

max-evoi   expansion of d' will have a greater expected utility than DT*. 

Consequently, DT* cannot be an optimal DTree. 

P4. The contrapositive of P4 is that if DT* is optimal, then it contains an expansion of 

anode in {d}. 

Theorem 3.4 Optimal Dnode selection by DD: If each DTree (DT) generated by DD is E- 

descending, then each Dnode selected by algorithm DD for expansion must be expanded in 

any optimal expansion of DT that contains nodes other than those in DT or {d}, where {d} 

is the set of Dnodes in DT with the maximum eu-expand value. 

Proof: 

DD selects the Dnode with the maximum eu-expand value. Consequently, by Property 

3 an expansion of that Dnode must be included in an optimal expansion. 

E-descending is not a very stringent constraint. While it is possible to increase the evoi value of 

an evidence item (E) by inserting a path of evidence values ({ei}) as ancestors to E, a violation of 

E-descending requires that 

That is, the CVOI'DT value must increase by a multiplier of more than 1/P({ei} I pathur(D)). This 

can only occur if the increase in the evoi value is substantial or if P({ei}) is near one. Both of 

these are unlikely if {ei} involves more than one evidence item. Consequently, violations of E- 

descending will be infrequent and most violations that do occur will only involve two level 

expansions. 
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Theorem 3.4 states that DD always expands the Dnode that must be expanded in an optimal 

expansion, while Theorem 3.2 asserts that DD always performs a locally optimal expansion of that 

Dnode. Intuitively, these two properties suggest that E-descending is sufficient to guarantee that 

DD-generated DTrees are optimal. It isn't. This is because greedy expansions may be redundant 

given several follow-on expansions. For instance, the eu-expand of Ei may be greater than either 

E2 or E3 individually, but together E2 and E3 may have a greater eu-expand than either El 

combined with either E2 or E3. Consequently, an optimal multi-step expansion may include E2 

and E3, but not Ei. 

Unfortunately, the conditions required to guarantee global optimality are very stringent. In effect, 

it is necessary to assume conditions that imply that for any N, any DTree consisting of N greedy 

expansions is optimal. It is easy to construct violations of this property where the violations first 

appear at arbitrary expansion depths. Furthermore, since all DTree expansion procedures 

eventually lead to the same fully-expanded DTree,-all expansion procedures will eventually 

converge to the same value. As they converge on this common value, there is no reason to believe 

that the greedy procedures will consistently generate optimal DTrees. Consequently, short of 

exhaustively searching the space of possible DTrees, there does not seem to be a way to guarantee 

the generation of optimal DTrees. 

On the other hand, the fact that violations of E-descending are not likely to involve the insertion of 

long evidence chains suggests that DD can be enhanced by examining expansions more than one 

level deep. 

Algorithm DDn 

I.   Let Ni be a Dnode containing only decurQ. 

n. Iterate through the following procedure 

A. For each Open Dnode find the expansion subtree of depth n or less for 

which the mean-eu-expand value is maximal. 

B. Select the Open Dnode for which the mean-eu-expand value found in A is 

maximal. Call this node N and its expansion subtree Es. 

C. Replace N with the subtree that resulted in the maximal 

mean-eu-expand DT(N). 

D. Check stopping criterion. If Stop, then exist with current DTree. 

E. Go to A. 
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DDi is the same as DD. DDn is similar to DD, except that it will look n levels deep to find the 

expansion with the greatest average contribution to the expected utility of the DTree. We call such 

expansions greedy n-step expansions. Since DDn examines strictly more nodes than DD, it will 

usually generate DTrees with expected utility greater or equal to the DTrees generated by DD. 

However, since neither algorithm is globally optimal, this cannot be guaranteed. 

DDn satisfies local optimality under weaker conditions than DD. 

Definition 3.4 En-descending: DT is an En-descending DTree iff for every open Dnode 

(D), and evidence item (E), 

P(par/iDT(D))-evo/DT(E I path(D)) > PipathmiD) u {ei})-evoiDT(E I pathüj(D u {ei})), 

where {ei} is any set of evidence values with cardinality not less than n. 

Note, E-descending is equivalent to Ei-descending. 

Theorem 3.5 Local optimality of DDn: If each DTree generated by DDn is En-descending, 

then the mean-eu-expand value of each expansion subtree selected by DDn is greater than or 

equal to the mean-eu-expand value of any alternative expansion set. 

Proof: 

As shorthand, let meu = mean-eu-expand. 

PI. We first show that for any DTree, there is a maximal meu expansion set which is a 

subtree. Let M be a maximum meu expansion set of DT. If M is not a single 

subtree, then M must be composed of a set of subtrees {Mi, ..., Mk}, each of 

which has its root at an open Dnode in DT. Select a subtree M\ in {Mi,..., Mk} 

for which meu(M[) > max[mew(Mi),..., raew(Mk)]. From basic algebra it follows 

that meu(M\) ^ meu(M). 

P2. Next we show that for any open Dnode there is an expansion subtree with depth 

no greater than n for which meu is maximal. (The root node of an expansion 

subtree is at depth 1.) Let M be a maximal meu expansion subtree that contains at 

least one node with depth greater than n. Let {mi, m2,..., mi, mi+i,..., mk} 

be the Enodes in M, where mi is the root, m2,.., mj are all the nodes of depth n or 

less. Since M is a maximal meu expansion subtree, it follows that meu(M) = 

meu[{mi, m2, ..., mj, mi+i,..., mk}] > meu[{m\, m2, ..., mi}]; otherwise 

mj+i, ..., mk would not be included in M. From basic algebra it follows that 

meu[{m\+\,..., mk}] > meu[M\. Let E* be the evidence item with the maximal 

eu-expand value. From En-descending it follows the eu-expand(E*) is greater 
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than the eu-expand value of any possible node at depth n or greater. Therefore, 

eu-expand(E*) > max(eu-expand((ml+i),..., eu-expand{m^))x which implies 

meu(E*) > meu(mi+i, ..., m^). Therefore, meu(E*) > meu(M). 

Consequently, the expansion subtree {E*} is also a maximum value expansion 

subtree. 

P3. DDn always selects the expansion subtree with depth ^ n with a greatest men 

value. Therefore, it follows from PI and P2 that DDn always selects an expansion 

set for which me« is maximal. 

Algorithm DDn allows the influence diagram compilation process to be arbitrarily conservative. 

Indeed, if n is set to the number of evidence items, then DDn will exhaustively search the space of 

all DTrees. However, as noted above, violations of E-descending that are greater than two levels 

deep are very unlikely. Consequently, algorithm DD3 will almost certainly generate a sequence of 

expansions that are locally optimal for any search depth. DDn also satisfies the optimal Dnode 

selection property described in Theorem 3.4. This is because, whenever a DTree is E-descending, 

DDn will select the same expansion as DD. 

Computational Complexity 

Let CI be the average computational complexity of processing an influence diagram. Let NE be the 

average number of evidence values for each evidence item. With each iteration of algorithm DDn, 

the number of times the influence diagram is processed in NEn. If a DTree contains R nodes, then 

the computational complexity of generating that DTree was NEn(R)(CI). That is, if the size of the 

DTree if fixed a priori, the computational burden of generating a DTree using DDn is a linear 

function of the computational burden of processing the influence diagram. 

3.1.3 Applications 

Performance evaluation presumes a model of the decision situations that a rule set is designed to 

handle, along with assessments of the probabilities and utilities associated with those situations. 

Otherwise, it would be possible to make a rule set look arbitrarily good or bad by carefully 

selecting the decision situations the rule set is tested against 

Each form of evaluation can provide a guide to the process of generating rule sets. For instance, 

Remy and Levis (1988) and Zaidi (1991) use concepts of architectural acceptability to derive a 

space of candidate architectures. These architectures, in turn, limit the types of rule sets that can be 

generated. The principal result of this section is that a performance evaluation model (i.e., an 
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influence diagram) can be used to derive procedure rules. In particular, the probability/utility 

information that is needed to evaluate a rule set is "compiled" into a DTree which defines a rule set 

that is logically complete, consistent, humanly-executable, and near-optimal in expected utility. 

Note also, that the DTree formulation supports adaptation to temporal and workload constraints, as 

shown in Chapter II. Recall that there is a default decision associated with each node in a DTree. 

As a result, processing of a DTree can be terminated at anytime with a decision. This behavior can 

be represented within the DTree formulation by inserting additional Enodes, where time/workload 

information is the evidence that is examined. If there are severe time/workload constraints, then 

the Enode branches to a Dnode with a default decision. If processing time is available, then the 

Enode branches to the next evidence to consider. 

Finally, we note that the overall objective of this research is to develop near-optimal decision 

procedures that can be quickly and reliably executed by a team of human decision makers. The 

specification of a DTree is the first step in the process of specifying a team's decision procedures. 

The DTree must still be partitioned into several decision procedures that can be allocated to 

different team members, as shown in Chapter H 

3.2 NEAR-OPTIMAL DECISION PROCEDURES 

3.2.1 Introduction 

In C2 there are numerous situations where important decisions must be made under stress 

conditions based on limited data. In such situations, it is essential that a C2 team have a good set 

of operating procedures. These procedures should be clear and simple enough to be executable in 

high stress conditions, yet sufficiently reliable to guarantee that appropriate decision are made 

given the time and data available. Unfortunately, theoretical results in decision theory (e.g., 

Cooper, 1990) suggest that even for decision problems where the number of decision options and 

evidence states are finite, the complexity of optimal decision making is at least NP-Hard. This 

suggests that "simple" and "good" are involved in a severe trade-off. 

In section 3.1 we presented a methodology for deriving near optimal decision procedures that 

could be executed by human teams. This methodology uses influence diagrams to model the 

decision situations that a team may face. The influence diagram is then compiled into a set of 

decision rules. The procedure is iterative, with each iteration additional rules are added to the 
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decision procedure. With each iteration, the expected utility of the decision procedure increases 

and will eventually asymptote at the expected utility of an optimal decision procedure. 

This section examines how complex a decision procedure must be before it is near optimal. 

Although the complexity of optimal decision making increases exponentially with the size of the 

influence diagram (with respect to the number of arcs and propositional variables in the diagram), 

there may be classes of decision problems where a simple decision procedure (e.g., a small rule 

set) will generate optimal or near optimal performance. The objective of the study describe below 

was to identify such classes of decision problems. 

3.2.2 Method 

The experimental method was to generate influence diagrams randomly, calculate the expected 

utility of an optimal decision procedure for that influence diagram, generate a series of increasingly 

complex DTrees, and compare the expected utility of the DTrees with the optimal decision 

procedures. Each of these steps is described below. 

Generate Influence Diagrams 

Influence diagrams were generated that varied in accordance with 2x2x2x2 factorial design. The 

following factors were used. 

In-degree level. The in-degree of a node is the number of parents of that note. The indegree level 

of the chance nodes was set at either one or three. Figure 3.3 depicts diagrams with indegree limits 

of one and three respectively. Note that since a diagram must be acyclic, there will be some nodes 

with fewer parents than the indegree level. 

Simple Diagram 
(tree structure) 

Complex Diagram 

Figure 3.3 Two Examples of Networks Generated During the Monte Carlo Study 
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Number of hypotheses. In all the influence diagrams generated for this study the choices in the 

decision node corresponded one-to-one with the states in the root chance node, which we refer to 

as the hypothesis node. The number of states in the hypothesis node was set at either two or four. 

Note that in all the diagrams generated, the hypothesis node was the root chance node. 

Number of evidence nodes. The number of evidence nodes was set at either three or five. Recall 

that an evidence node is defined as a chance node for which the state of that node is known when 

the decision must be made. 

Number of evidence states. The number of states associated with each evidence node was set at 

either two or four. 

Five influence diagrams were generated randomly for each cell in the 2x2x2x2 design matrix. 

Each diagram had one decision, one value, and seven chance nodes. The value node assigned a 

utility of 1.0 if a selected decision corresponded to the true state of the hypothesis node (H), and a 

utility of 0.0 otherwise. Consequently, the expected utility of a decision procedure was equal to 

the probability that the decision procedure would select the true hypothesis state. Each of the 

conditional probability values in the diagram was assigned randomly. All random assignments in 

generating the diagrams were from a uniform distribution or density function. 

Derive DTrees 

A sequence of increasingly complex DTrees were derived using algorithm DD. Briefly 

summarized, this algorithm works as follows. 

Algorithm DD for experiment 

i. Determine the decision with the highest expected utility when there is no evidence 

"available. A single Dnode containing this decision is the initial DTree. 

ii. For each Dnode, select the evidence item has the greatest increase in the expected 

value of information. For each Dnode, the evidence item with the greatest expected 

value of information will be the next possible expansion of the Dnode. 

iii. Select the Dnode which has the next possible expansion with the greatest increase in 

the overall expected utility of the DTree. Replace this Dnode with an Enode 

(containing the selected evidence item) and add a Dnode for each possible evidence 

state for the Enode. 

iv. Continue looking for more evidence data (iterate on ii and iii) until there is no 

evidence is left or a threshold on the increase in expected utility is reached. 
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Calculate expected utility of optimal decision procedure 

A complete evidence state is defined as a vector that specifies the state of each of the evidence 

nodes. For any evidence state, the maximum expected utility choice can be derived using any of a 

variety of algorithms for processing influence diagrams. Furthermore, the probability of an 

evidence state can be derived using any of a number of algorithms for processing belief networks. 

Consequently, the expected utility of an optimal decision procedure is equal to sum over the 

probability of each evidence state times the expected utility of the optimal choice within each state. 

Dependent Variable 

The principal dependent variable in the study was relative expected utility, which is defined as the 

expected utility of the DTree divided by the expected utility of the optimal decision procedure. 

3.2.3 Summary of Results 

A complete report of the results will be found in Sadigh (1993). Here we summarize the main 

findings. 

For each cell in the factorial design, the results were summarized by graphing the increase in DTree 

relative expected utility as E-nodes were added to the DTree. In general, we observed that the 

combinations of increase in the indegree level and multiple propositional variables, in both the 

hypothesis and evidence nodes, were the influential factors in increasing the complexity of the 

decision procedures. The increase in number of evidence nodes in the influence diagram had a 

relatively small effect 

When there were only two hypothesis states, simple DTrees (four or fewer E-nodes) with relative 

expected utility greater than 0.9 could almost always be found. Figure 3.4 shows three graphs 

illustrating this result. 

The results in Figure 3.5 depicts another situation where simple decision procedures could 

generally be found. In this case, when the structure of the influence diagram was a tree, DTrees 

with relative expected utility greater than 0.9 could usually be found. 

On the other hand, Figure 3.6 shows the results for some situations where simple DTrees with 

high relative expected utility could not usually be found. In the case where there are four states for 

the hypothesis and evidence nodes, and an indegree level of three, relative expected utility leveled- 

off at around 0.8. 
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Figure 3.6 Sample of Results with Multiple Hypotheses and Indegree Level = 3 

3.2.4 Discussion 

The results suggest that simple decision procedures (e.g. standard operating procedures - SOPs) 

are often adequate for addressing decision problems where the decisions are binary (e.g. 

identifying friends and foes - IFF), or when there are multiple independent sources of information, 

(i.e., a tree structured influence diagram) In these circumstances, it is usually possible to derive 

simple decision procedures with EU which is comparable to that of an optimal decision procedure. 

For problems of this type, it seems likely that a carefully thought out set of operating procedures 

will exhibit optimal or near-optimal performance. There is probably little benefit to be gained from 

developing an extensive domain model (such as an influence diagram, analytic model, or 

computerized simulation) that could be used to derive/test alternative decision procedures. Also, it 

would seem that such problems are not good candidates for decision support. 

On the other hand, when there are there are multiple choices, and the decision problem involves 

multiple interacting sources of information, then it is unlikely that a simple decision procedure 

exists which will generate near optimal performance. In such circumstances, there may be 

considerable benefit to be gained from an extensive effort to formally model a problem. Such 

models may be needed to effectively assess the performance of alternative decision procedures. 
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Furthermore, because simple decision procedures may not suffice, such problems seem to be good 

candidates for decision support. 

3.3 COGNITIVE BIASES IN TEAM DECISION PROCEDURES 

3.3.1 Introduction 

In section 3.2 an approach to deriving a team decision procedures was described. This approach 

emphasized the use of analytic procedures to derive team procedures that exhibit both high 

performance and low workload. It was implicitly assumed that alternative procedures with equal 

workload would be executed with equal reliability. In this section, we argue that this is an 

oversimplification. Instead, we argue for the general hypothesis that "unnatural" decision 

procedures are not likely to be reliably executed under conditions of time stress. The experiment 

reported below is a test of this hypothesis. 

Team Decision Making 

A team is defined as a group of decision makers, with overlapping areas of expertise, that work 

cooperatively to solve common decision problems. The cockpit crew of a commercial aircraft 

(pilot, co-pilot, navigator) is an example of small team, while the crew of a submarine control 

room is an example of a somewhat larger team. Command and control teams (C2 team) are further 

characterized as teams where (a) each member of the team is responsible for an assigned set of 

tasks, although the assignment of tasks may change dynamically, (b) each team member has been 

trained for the tasks that he or she is to perform, and (c) for the problems the team faces, the team 

members have the common goal of satisfactorily solving that problem. Finally, we note that C2 

teams often address problems that are severely time constrained. 

C2 teams are generally well-trained. Consequently, C2 team performance is usually high. 

However, "human error" does sometimes occur. This is particularly true under conditions of 

stress. If the consequences of decisions are severe, and there is very little time for the team to 

perform its tasks, catastrophic mistakes can easily occur. The objective of this research is to 

experimentally identify team decision procedures that tend to be executed relatively unreliably 

under conditions of time stress. 

Cognitive Biases and Behavioral Decision Theory 

Behavioral Decision Theory (BDT) is a branch of psychology that performs research in human 

judgment and decision making (JDM). Although related to cognitive psychology research in such 
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areas as human problem solving (e.g., Newell and Simon, 1972) memory, natural language 

understanding, and the like, it has traditionally been separated from these areas by two features 

(Lehner and Adelman, 1990). First, there is an emphasis on tasks that involve quantitative 

tradeoffs and the integration of subjective judgments (e.g., probability assessment, option 

selection). Second, there is more of a focus on models that characterize JDM performance rather 

than JDM processes. For instance, BDT researchers often use linear models to characterize 

behavior in contexts where it is believed that the "internal" JDM process is pattern-based and non- 
linear. 

An important result in the BDT literature is that human decision making behavior exhibits a number 

of cognitive biases. Cognitive biases are defined as judgments that consistently deviate from a 

normative ideal. The standard explanation for the occurrence of cognitive biases is that people 

employ a variety of heuristic procedures when making judgments that bear little resemblance to 
theoretically normative procedures. Some of these biases are listed below. 

Availability Bias. People often overestimate the probability of an event that is easy to recall 
or imagine (e.g., Tversky and Kahnemann, 1973). 

Confirmation Bias. People tend to seek and focus on confirming evidence, with the result 

that once they've formed a judgment, they tend to ignore or devalue disconfirming evidence 
(e.g., Wason, 1960; Tolcott, et al., 1989). 

Frequency Bias. People often judge the strength of predictive relations by focusing on the 

absolute frequency of events rather than their observed relative frequency. As Einhorn and 

Hogarth (1978) have shown, information on the nonoccurrence of an event is often 
unavailable and frequently ignored when available. 

Concrete Information. Information that is vivid or based on experience or incidents 

dominates abstract information, such as summaries or statistical base-rates. According to 

Nisbett and Ross (1980) concrete and vivid information contributes to the imaginability of 
the information and, in turn, enhances its impact on inference. 

Conservatism. If people are forced to consider base rates, then they often underestimate 

the predictive value of new information. That is, their revised probability estimates remain 
too close to the original base rates (Edwards, 1968). 

Anchoring and Adjustment. A common strategy for making judgments is to anchor on a 

specific cue or value and then to adjust that value to account for other elements of the 
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circumstance. Usually the adjustment is insufficient. So once the anchor is set, there is a 

bias toward that value (Kahneman and Tversky, 1973). 

"Law of Small Numbers". Problems can be framed in such a way that people, including 

trained statisticians, give undue confidence to conclusions supported by a relatively small 

amount of data (Tversky and Kahneman, 1971). 

Hindsight Bias. This is perhaps the most problematic of all biases (Fischhoff, 1975). 

After an event occurs, people will often claim they predicted the event ("I knew it all 

along!"), even though prior to the event they were very uncertain. 

Fundamental Attributi on Error. People tend to attribute success to their own skill and 

failure to chance or the circumstances in which they were situated. However, when 

evaluating the performance of other people, the tendency is to attribute other people's 

failure to their personality traits, not the situation (see Nisbett and Ross, 1980). 

Because of the prevalence of cognitive biases, there has also emerged a research literature 

addressing the "debiasing" problem. The objective of this research is to develop presentation and 

problem solving techniques that reduce biases. This literature is reviewed in O'Connor (1991). 

Despite a few successes, the principal result seems to be cognitive biases are very resistant to 

debiasing techniques. 

Cognitive Biases and Team Decision Making 

The principal focus of the cognitive bias literature is on natural decision making procedures. 

Consequently, it can be argued that cognitive biases are irrelevant to C2 team decision making, 

since team members are well-trained in their decision making tasks. This argument asserts that, as 

long as workload is not excessive, people will reliably execute whatever decision procedures they 

have been trained to execute; irrespective of what they might naturally do if they were not trained. 

In contrast, one could argue that "unnatural" decision procedures are vulnerable-to-bias. A 

vulnerable-to-bias procedure is defined as a judgment or decision procedure that an untrained or 

poorly trained decision maker would not reliably execute, because of a cognitive bias. For 

instance, a judgment procedure that requires a person to make an initial judgment based on sparse 

evidence, and then to update that judgment based on additional evidence, is vulnerable to both the 

conservatism and the confirmation bias, as well as to any other biases that might result from the 

use of an anchoring and adjustment heuristic. These biases suggest that people would normally 
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undervalue the impact of new evidence, and that they may stick with their original judgment in the 

face to strong counter evidence. 

Vulnerable-to-bias procedures may impact team decision making in two ways. First, it may be 

difficult to train decision makers in decision procedures that are vulnerable-to-bias. The debiasing 

literature (O'Connor, 1991) suggests that this is likely to occur. Second, under conditions of 

stress, it is possible that vulnerable-to-bias decision procedures will not be as reliably executed as 

more natural decision procedures. It is this later possibility that is investigated here. 

The experiment reported below contrasts two perspectives. 

Perspective 1 (PI) - Cognitive biases are largely a matter of preference. Although 

people tend to use heuristic rules that deviate from normative decision theory, they can 

be taught to reliably use alternative rules; as long as the alternative rules do not exceed 

workload constraints. 

Perspective 2 (P2) - Cognitive biases are largely a matter of capability. Even after 

training, people do not reliably execute judgment and decision procedures that are 

vulnerable-to-bias. 

For team decision making under stress, these two perspectives differ considerably with respect to 

their implications for team design. If PI is correct, then the literature on human cognitive biases is 

largely irrelevant to the problem of designing teams. Properly trained and practiced teams will 

reliably execute correct decision procedures until workload or other bounded rationality constraints 

are exceeded. On the other hand, if P2 is the correct perspective, then cognitive bias 

considerations should place severe constraints on the design of a team. Specifically, team 

architectures and decision procedures should avoid vulnerable-to-bias decision procedures, since 

these decision procedures will not be reliably executed in high stress conditions. 

3.3.2 Method 

The experiment was a modification of that of Jin (1990). Two person teams worked together to 

defend a battle group from incoming aerial attacks. Each team member must assess the type of 

aircraft associated with each radar track. 
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Subjects 

Subjects were paid volunteers from the graduate and undergraduate student population at George 

Mason University. Data from eleven two person teams was collected. In addition, pilot data from 

four two person teams was collected. 

Materials 

This game was played with two players and three Macintosh LC computers. Each player was 

placed behind one computer. The players were named DM1 and DM2 on the computer. The third 

computer was named DM3. In this experiment the DM3 computer was only used to synchronize 

the game between between DM1 and DM2. 

Display 

The display was divided into six windows. Figure 3.7 shows the display from DMl's 

perspective. The display and all procedures for DM2 is a mirror image of DM1. 

DM2-merge DM1-merge 

Threat Information 
ID B_ -Hum Type, 

Resource assigned to   I     I 
Type   Amount   Assigned      ' ' 

t- 30 
+ 30 

*      30 

[Clear] 

[Attack) 

Messages 

la   O 
O 
0 
o 

Type   O Bomber 0 Fighter   O Surveillance 
Class QFast       Q Medium  QSIOID  

Out Waiting ) [Message) 

Sen«! Cancel 
DM 

Names 
DM2 
DM3 

Figure 3.7 Screen Display for DM1 

The first window (upper left) was for displaying Threat Information. When a threat was selected, 

(see below) information about that threat was displayed. This information includes an ID number, 
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the angle of attack on the screen (R), the velocity of the track (V), and the number of aircraft in the 

track (Num). In addition, if the other DM sent advice regarding the type of threat (see below) that 

information was also displayed (Type). However, this Type advice was not displayed until after 

the DM made an initial judgment as to the type of the aircraft. 

The second window (below the first window) displays the resources assigned to each threat after 

the threat and the Attack button were selected. This region includes two buttons, Attack and Clear. 

The Clear button was not used in this game. The Attack button was routinely selected after target 

Type was selected. 

The third window, which is located below the second region, is the Messages window. Messages 

from the other player were displayed in this region. In this experiment, the only information that 

was displayed was the other DMs assessment as to the type of aircraft in a track. This Type 

"advice" was only displayed after an initial Type judgment was made by DM1. 

The fourth window is the Radar. The Radar display was located on the top right hand side of the 

screen. In this region the incoming threats were displayed by a small triangle and the players 

selected individual threats by placing the cursor on the threat and clicking the mouse button. Once 

this action is carried out, information about the threat was displayed in the Threat Information 

window. From DMl's perspective radar, the radar was partitioned into four regions. They are 

DM1-merge, DM2-merge, and DM1-only and the region where no information was displayed. 

For the DM1-only region, DM1 could click on a track; make judgments with respect to its Class 

and Type; and hit the Attack button. For the DM2-merge region, DM1 could click on a track; make 

judgments with respect to its Class and Type; and then send that advice to DM2 by pressing the 

Send button. For the DMl-merge region, DM1 could click on a track; make judgments with 

respect to its Class and Type; review the advice from the other DM; change his or her Type 

judgment; and click the Attack button. 

In the remainder of this section, the regions on the Radar screen will be generically referred to as 

DMi-only, DMi-merge, DMj-merge. 

The fifth window is located below the radar screen. It is used to record Class (Slow, Medium, 

Fast), and Type (Bomber, Fighter, Surveillance) judgment for the threats that appear on the Radar. 

These are selected based on the threat information that appear in the Threat Information window 

and advice that appears in the Messages and Threat Information windows. 
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The sixth window is located at the bottom right hand side. In this window there are four keys: 

Wait, Message, Send, and Cancel. This region was used to transmit type advice from one DM to 

the other. This was carried out by selecting the destination from the list of DMs, selecting the 

Message button and then selecting the Send button. 

Procedures: Objective and Rules of the game 

The team objective was to correctly identify and attack all the threats before they reached the small 

center circle. For all three regions, each DM must initially to use number and velocity information 

to select Class, Size, and Type. The rules for these initial judgments were as follows. 

Class 

Slow if Velocity < 500 

Fast if Velocity > 800 

Medium otherwise 

Size 

Small if Number < 5 

Medium if Number = 5 

Large if Number >5 

Type. 

Fighter if Speed = Slo 

Bomber 

Surveillance 

if Speed = Slow and Class = Medium 

if Speed = Fast and Class = Large 

if Speed = Slow and Class = Large 

if Speed = Medium and Class = Large 

otherwise. 

For threats in the DMi-only or DMj-merge regions either the Attack or Send button was hit after the 

Type judgment was made. For the DMi-merge region, after Type was selected, DM2's advice was 

displayed, if any had been sent. At this point DMi was trained to revise his or her Type judgment 

according to the following rules. 
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Condition Initial Tvpe Judgment Type Advice Received Final Tvpe Judgment 

FF Fighter Fighter Fighter 

FB Fighter Bomber Bomber 

FS Fighter Surveillance Surveillance 

BF Bomber Fighter Bomber 

BB Bomber Bomber Bomber 

BS Bomber Surveillance Fighter 

SF Surveillance Fighter Surveillance 

SB Surveillance Bomber Fighter 

SS Surveillance Surveillance Surveillance 

Note that the rules for the FB and FS condition require the DM to modify his or her original 

opinion to conform with the new information (the other DM's advice). Also the BS and SB 

conditions require that the DM select a new Type that that was inconsistent with both DMs' initial 

selection. The decision procedure for the FB, FS and the BS, SB conditions were considered to 

be vulnerable-to-bias, since they required subjects to anchor and then adjust their original 

judgment. 

Instructions 

Subjects were instructed about the general nature of the game. They were told that the tactical 

information for threats arriving in the merge (i.e., DMl-merge and DM2-merge) regions was not 

as reliable as the information in the DMi-only regions. Consequently, the rules for combining 

initial Type judgment with the other DM's advice were needed to increase accuracy. 

Training 

The subjects were trained for a period of approximately 1.5 hours before the game started. 

Training occurred in four stages. 

During the first stage, the players were trained in their DMi-only region. They were instructed to 

ignore tracks arriving in the other regions. This continued until the subjects were comfortable with 

the rule set. The training set involved tracks at varying speeds (see below). 

Once the players were comfortable dealing with the threats in DMi-only region, they were 

instructed to ignore this region and concentrate only on the threats in the DMj-merge region, where 

they had to make a Type judgment and send that judgment as Type advice to the other DM.  Once 
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again, they repeated this (at varying speeds) until they were comfortable with the rules and 

procedure. 

Third, the players were instructed to practice sending advice and then to deal with their DMi-merge 

region. Here they were required to learn the rules for adjusting their initial judgments on the basis 

of the other DM's advice. Once again this continued until the subjects were comfortable with the 

rule set and general procedure. 

Finally,.they were told to practice the complete game and try to stop all threats before they came to 

the center of the radar. It was recommended that subjects process tracks in the DMj-merge, DMi- 

only, and the DMi-merge regions respectively. This guaranteed that the other DM had time to send 

advice before the subject began processing his or her DMi-merge tracks. 

This practice session was repeated until the players felt proficient with the rules. 

In all of these practice sessions the players were allowed to look at two tables that summarized the 

judgment rules. This was done in order to let them confirm that their decisions were correct. 

Experimental Tasks 

Each team processed 12 sets of ten trials each. The 12 sets were partitioned into four sets each 

with tracks moving at 400, 600, 750, and 900 mph respectively. At a speed of 400 mph the 

subjects had 45 seconds to process all tracks. At 600 mph, they had 30 seconds. At 750 and 900 

mph, they had 24 and 20 seconds respectively. There was a short break between trials 

(approximately 20 seconds) and a longer break between sets of trials (about four minutes). The 

training and experimental sessions were distributed over two days. Each team took a total of about 

2.5 hours to complete all 12 sets of trials. Consequently, teams spent an average of about 4 hours 

in training and experimental sessions. 

It should be noted that the Appletalk network crashed about once every 6 hours during training and 

experimentation. Consequently, it was sometimes necessary to have a short break during a set of 

trials to restart on the next track. 

Each trail was composed of 8 tracks. Two in each of the four regions (DMl-only, DMi-merge, 

DM2-merge, DM2-only). Subjects were simply instructed to do their best to process as many of 

the incoming tracks as possible. 
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3.3.3 Results 

Reliability: An initial examination of the data revealed that for two of the teams, performance on 

the slowest speed trials was less than 50%. Since a performance level of 33% can be obtained by 

answering randomly, the data from these teams was not included in the analysis. The performance 

of the other nine teams, for the slowest speed, was consistently high. 

Overall Accuracy: Tables 3-1 through 3-4 summarize the proportion of tracks that were correctly 

processed for each of the trial speeds. The columns on the four tables are defined as follows. 

• DMi-only: This column represents proportion correct in the DMi-only region. 

• Advice sent: This column represents the proportion of tracks in the DMj-merge region for 

which the correct advice was sent to the other decision maker. 

• No merge: For the tracks in the DMi-merge region for which advice was not received, this 

column represents the proportion of tracks for which the correct judgment was made based 

only on just the information in the Threat Information window. 

• Merged: For the tracks in the DMi-merge region for which advice was received, this 

column represents the proportion of times the correct final judgment was made. 

Table 3-1 Performance by Region, Speed = 400 

Subject DMi-only Advice sent No merge Merged 
TM1DM1 0.97 0.98 - 0.98 
TM1DM2 0.97 .   0.98 - 0.68 
TM2DM1 1 1 0 0.97 

TM2DM2 0.97 0.98 - 0.97 

TM4DM1 1 0.98 1 0.98 
TM4DM2 0.95 0.97 0.5 0.94 

TM5DM1 0.95 1 0.38 0.88 

TM5DM2 0.7 0.77 0.22 0.75 
TM6DM1 0.97 1 - 0.95 

TM6DM2 1 1 1 0.98 
TM7DM1 0.97 1 0.75 0.93 
TM7DM2 0.95 0.92 0.1 0.86 

TM8DM1 0.84 0.57 0.61 0.71 

TM8DM2 0.78 0.57 0.3 0.57 

TM9DM1 1 0.98 0.29 0.94 

TM9DM2 0.98 1 1 0.98 

TM10DM1 1 1 1 1 

TM10DM2 0.98 1 0.8 0.93 

Overall Result 0.943 0.929 0.446 0.916 
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Table 3-2 Performance by Region, Speed = 600 

Subject DMi-only Advice sent No merge Merged 

TM1DM1 0.86 0.95 0 0.96 
TM1DM2 0.83 1 0.67 0.79 

TM2DM1 1 0.82   . 0.65 0.84 

TM2DM2 1 1 0.5 0.93 
TM4DM1 1 0.97 0.6 0.98 

TM4DM2 0.83 0.93 0.17 0.83 

TM5DM1 0.88 0.97 0.34 0.92 

TM5DM2 0.67 0.78 0.18 0.81 

TM6DM1 0.82 1 - 0.9 

TM6DM2 0.85 1 - 1 

TM7DM1 1 1 0.69 0.94 

TM7DM2 0.73 0.87 0.14 0.75 

TM8DM1 1 0.97 0.74 1 

TM8DM2 0.62 0.33 0.2 0.75 
TM9DM1 0.97 0.88 0.32 0.71 

TM9DM2 1 1 0.5 0.89 

TM10DM1 0.98 1 0.17 0.96 
TM10DM2 1 0.98 0.42 0.98 

Overall Result 0.89 0.914 0.379 0.909 

Table 3-3 Performance by Region, Speed = 750 

Subject DMi-only Advice sent No merge Merged 
TM1DM1 0.82 1 0 0.96 

TM1DM2 0.73 1 1 0.81 

TM2DM1 0.95 0.98 0.28 0.79 
TM2DM2 0.98 0.98 0.33 0.98 
TM4DM1 0.98 0.98 0.46 0.87 

TM4DM2 0.86 0.93 0.38 0.83 

TM5DM1 0.52 0.67 0.26 0 

TM5DM2 0.53 0.78 0.29 0.8 
TM6DM1 0.54 0.98 1 0.88 

TM6DM2 0.32 1 0.67 0.98 

TM7DM1 0.98 1 0.54 0.81 

TM7DM2 0.72 0.9 0.29 0.73 

TM8DM1 1 0.97 0.49 0.67 

TM8DM2 0.78 0.23 0.32 0 

TM9DM1 1 0.81 0.23 0.85 

TM9DM2 1 0.9 0.26 0.82 

TM10DM1 0.95 0.98 0.22 0.93 

TM10DM2 0.88 1 0.25 0.91 

Overall Result 0.808 0.907 0.327 0.881 
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Table 3-4 Performance by Region, Speed = 900 

Subject DMi-only Advice sent No merge Merged 
TM1DM1 0.48 1 0.26 0.94 
TM1DM2 0.5 1 0.56 0.76 
TM2DM1 0.77 0.98 0.33 0.67 
TM2DM2 0.98 1 0.41 0.85 
TM4DM1 0.9 1 0.28 0.6 
TM4DM2 0.74 0.98 0.29 0.56 
TM5DM1 0.37 0.73 0.29 
TM5DM2 0.47 0.78 0.26 0.33 
TM6DM1 0.18 0.98 0.83 0.7 
TM6DM2 0.08 1 0.43 0.98 
TM7DM1 1 1 0.41 0.81 
TM7DM2 0.6 0.9 0.32 0.8 
TM8DM1 1 0.89 0.18 0 
TM8DM2 0.75 0.42 0.25 1 
TM9DM1 0.98 0.75 0.15 0 
TM9DM2 0.98 0.72 0.32 0.33 
TM10DM1 1 0.92 0.27 0.67 
TM10DM2 0.93 1 0.3 0.7 

Overall Result 0.69 0.889 0.295 0.766 

Table 3-5 summarizes the average results for the four speed conditions. The performance in the 

No-merge group is largely irrelevant, since it reflects a condition were subjects did not receive an 

input they were expecting. Performance under this condition is expected to be low. 

Table 3-5  Accuracy at Different Speeds 

Speed DMi-only Advice sent No merge Merged 
400 0.943 0.929 0.446 0.916 
600 0.89 0.914 0.379 0.909 
750 0.808 0.907 0.327 0.881 
900 0.69 0.889 0.295 0.766 

An examination of the other columns reveals that subjects consistently maintained high 

performance on the tracks where they needed to send advice. They also managed to maintain 

relatively high performance for the Merged judgments. Performance for the DMi-only judgments 

dropped more substantially as time available decreased. An detailed examination of the subject 

output files reveals that this is due to the order in which subjects processed the tracks. Under the 

lower time stress conditions, subjects would process tracks in the order recommended (i.e., send 

advice first, DMi-only tracks second, and then do the merge judgments). However, as time stress 

increased, subjects shifted the order. They would process the merge tracks before attempting to 
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process the DMi-only tracks. This is reflected in Table 3-6, which indicates the average rank order 

of processing of the tracks in different regions. 

Table 3-6 Average Rank Order of Processing Tracks 

DMi -only DMj-merge DMi-merge 
Speed Mean S.D. Mean         S.O. Mean         S.D. 
400 3.32 1.36 2.07           0.84 4.55           1.45 
600 3.19 1.25 2.03           0.80 4.46           1.29 
750 3.14 1.18 1.85           0.88 4.47           1.02 
900 2.74 1.17 1.89           0.74 2.25           1.16 

Vulnerable-to-bias judgments 

The principal hypothesis was that vulnerable-to-bias decision procedures are executed less reliably 

than other decision procedures and are more vulnerable to the effects of time stress. This implies 

that performance for the FF, BB, SS and the BF, SF conditions will be higher than for the FB, FS 

and the BS, SB conditions. Tables 3-7 through 3-10 summarize performance under each condition 

for each level of time stress. 

Table 3-7 Performance of Different Types of Merge Judgments, Speed = 400 

Not vulnerable to bias Vulnerable to bias 
Subject FF, BB, SS BF, SF FB, FS BS,  SB 
TM1DM1 1 1 0.944 
TM1DM2 0.545 0.417 0.611 
TM2DM1 1 0.917 0.944 
TM2DM2 1 1 0.889 
TM4DM1 1 1 0.933 
TM4DM2 1 1 0.833 
TM5DM1 0.941 1 0.846 0.769 
TM5DM2 0.733 0.7 1 0.625 
TM6DM1 1 0.917 0.889 
TM6DM2 1 1 0.944 
TM7DM1 0.917 0.769 1 
TM7DM2 0.941 1 0.636 0.857 
TM8DM1 1 0 
TM8DM2 0.667 0.5 0.25 
TM9DM1 1 0.833 0.938 
TM9DM2 0.941 1 1 1 
TM10DM1 1 1 1 
TM10DM2 1 0.917 0.813 

Overall Result 0.9751773 0.93854749 0.88359788 0.86131387 
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In general, performance at each level supported the hypothesis that the vulnerable-to-bias decision 

procedures were executed less reliably than the other decision procedures. A statistical analysis of 

these results is reported in Table 3-11. This analysis was performed by examining the proportion 

of individual subjects for whom the relative performance results were in the predicted direction. 

For instance, for the prediction BF, SF > FB, FS at Speed = 400, there were nine subjects for 

which the average performance for the BF and SF condition was higher than for the FB and FS 

conditions, seven with equal performance, and one with performance in the reverse. A one-tailed 

sign test on a ratio of 9:1 gives the result p < .05. 

Table 3-8 Performance of Different Types of Merge Judgments, Speed = 600 

Not  Vulnerable-to-bias Vulnerable-to-bias 

Subject FF, BB, SS             BF,  SF FB,  FS                BS,  SB 

TM1DM1 1 1 0.867 

TM1DM2 0.786     • 0.643 0.765 

TM2DM1 0.4 1 

TM2DM2 0.786 0.938 

TM4DM1 0.889 1 

TM4DM2 0.875 0.714 1 . 0.75 

TM50M1 1 0.667 

TM5DM2 0.6 0.75 

TM6DM1 0.75 0.917 0.867 

TM6DM2 1 1 

TM7DM1 0.8 0.9 

TM7DM2 0.571 0.75 0.857 0.833 

TM8DM1 1 - 

TM8DM2 0 1 1 

TM9DM1 0 0.667 

TM9DM2 0.875 0.778 0.923 

TM10DM1 1 0.9 0.929 

TM10DM2 1 1 1 0.923 

Overall Result 0.97252747 0.93006993 0.84 0.88505747 

It should be noted, however, that the results do not directly support the notion that the vulnerable- 

to-bias procedures degrade more rapidly than other procedures as stress increased. Although the 

FF, BB, SS and BF, SF conditions were more reliably executed than the FB, FS and the BS, SB 
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Table 3-9 Performance of Different Types of Merge Judgments, Speed = 750 

Not  Vulnerable-to-bias Vulnerable-to-bias 

Subject FF,  BB,  SS              BF,  SF FB,  FS BS,   SB 

TM1DM1 1 0.875 0.938 

TM1DM2 0.667 0.583 0.882 

TM2DM1 1 0.5 0.667 

TM2DM2 1 0.875 1 

TM4DM1 1 0.75 0.8 

TM4DM2 1 - 0.667 

TM5DM1 - - - 0 

TM5DM2 0.667 - - 1 

TM6DM1 0.941 1 0.917 0.722 

TM6DM2 1 1 1 0.941 

TM7DM1 1 1 0.571 0.733 

TM7DM2 1 0.667 0 1 

TM8DM1 0.5 1 - - 

TM8DM2 - - 0 - 

TM9DM1 1 1 0.5 0.8 

TM9DM2 1 1 0.667 0.667 

TM10DM1 1 1 0.667 0.889 

TM10DM2 1 1 0.857 0.778 

Overall Result 0.97916667 0.94565217 0.74444444 0.82894737 

conditions, the difference in performance between these conditions did not increase consistently as 

time stress increased. However, this lack of support is an artifact of the experimental design, since 

it must be the case that in non time stressed situations subjects could flawlessly execute the simple 

decision procedures in this experiment. 

Comparison to Pilot Study 

A pilot study of four teams was run prior to executing the main experiment. The pilot procedure 

differed from the main experiment in that there was more training, subjects went through more 

sessions, and the slowest speed was considerably slower. In the pilot study, all four groups 

attained near perfect performance at the slowest speeds. The other results were about the same. 
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Table 3-10 Performance of Different Types of Merge Judgments, Speed = 900 

Not   Vulnerable-to-bias Vulnerable-to-bias 

Subject FF, BB, SS BF,  SF FB,  FS BS,  SB 
TM1DM1 1 0.889 1 0.875 
TM1DM2 1 0.667 0.571 0.733 
TM2DM1 1 0.5 - - 

TM2DM2 1 1 1 0.667 
TM4DM1 0.75 0.667 0.667 0 
TM4DM2 1 1 0.25 0.5 
TM5DM1 - - - - 

TM5DM2 1 0.25 - 0 
TM6DM1 0.933 0.833 0.545 0.5 
TM6DM2 1 1 0.9 1 
TM7DM1 0.8 1 0 0.778 
TM7DM2 - 0 1 1 
TM8DM1 - 0 - 0 
TM8DM2 - 1 - 1 
TM9DM1 - 0 0 0 
TM9DM2 - 1 0 0 
TM10DM1 0.5 1 0 0.667 
TM10DM2 1. 0.75 1 0.333 

Overall Result 0.94285714 0.7625 0.67307692 0.68539326 

Table 3-11 Number of Subjects for Which Vulnerable-to-Bias Procedures had more Errors than 

the Non Vulnerable-to-Bias Procedures 

Predicted Direction of Effect 

FF,BB,SS=BF,SF BF,SF>FB,FS BF,SF>BS,SB FB,FS=BS,SB 

G 

> 

bserved O 

> 

bserved O 

> 

bserved O 

> 

bserved 

Speed < — < _ < M. < 

400 4 10 3 9 7 1* 13 2 2" 11 2 5 

600 5 11 2 10 5 3* 9 4 4 5 2 9 

750 2 11 2 12 1 0*** 11 1 2* 3 1 9 

900 7 3 2 7 3 3 10 4 2* 5 3 5 
* p < .05 (one-tailed sign test) 
** p < .01 

p < .001 

70 



3.3.4 Discussion 

Overall, the results support the hypothesis that vulnerable-to-bias decision procedures are less 

reliably executed than other decision procedures. Time available ranged from 45 seconds to 20 

seconds. For all times available, the vulnerable-to-bias decision procedures were the less reliably 

executed procedures. This result occurred even though the decision procedures in which subjects 

were trained were very simple; involving only a few rules and no more than two preconditions per 

rule. 

A possible confounding variable is the possibility that subjects adapted to time stress by routinely 

ignoring the other DMs' advice. Although this behavior be would consistent with the vulnerable- 

to-bias hypothesis, it would have the effect of reducing the effective sample size. Rather than 

treating each track as an independent sample, each set of tracks becomes a sample of one strategy 

shift. However, the results do not support this explanation. If true, this explanation would predict 

that performance for the BF, BS conditions would be the same as the BB, FF, SS condition, and 

that performance for the FB, FS and BS, SB condition would be near zero. This later result 

clearly did not occur. Instead, the results suggest that subjects adapted to severe time stress by 

changing the order in which they processed tracks. For the lower stress conditions, subjects 

ordered tracks in the way they were trained; by first sending advice (DMj-merge), then taking care 

of the their own tracks (DMi-only), and finally by processing the tracks where they had to merge 

their judgment with the other DM's advice (DMi-merge). This was the optimal strategy since it (1) 

guaranteed that the other DM would have time to send advice, and (2) it left the most time 

consuming tracks to be processed last. Interestingly, as time stress increased, subjects adapted by 

moving away from the optimal strategy; processing tracks in the order DMj-merge, DMi-merge, 

and DMi-only. Indeed, this order was the worst possible order for processing tracks under time 

stress, since the first tracks to be completely processed (DMi-merge) are also the tracks that take 

the longest to process. One possible explanation for this maladaptive behavior is that subjects 

responded to time stress by processing the tracks by "visual order", i.e., moving from upper left to 

the lower right portion of the screen. They were reducing cognitive workload by simplifying the 

decision procedure for selecting which track to process next 

Overall these results suggest that when specifying team decision procedures, vulnerable-to-bias 

procedures should be avoided. Although a well trained team may execute vulnerable-to-bias 

procedures reliably in non stress conditions, these procedures are very vulnerable to the effects of 

time stress. In addition, these results point to the importance of procedures for adapting to stress. 

The subjects in this experiment adapted inappropriately. 
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CHAPTER IV 

DERIVING ARCHITECTURES 

4.1 INTRODUCTION 

In the previous two chapters, the derivation of organizational decision strategies and their allocation 

to organizational structures were described. The procedures were illustrated with very small 

organizations - organizations consisting of several decison makers. While this is a realistic model 

of a team, it must be recognized that teams operate in the context of larger organizations. Teams are 

part of larger organizational structures which, both in the military, in industry, and in academial 

have a hierarchical structure. While the functional architecture of such an organization may not be 

hierarchical, its organizational architecture usually is. A group of organization members constitute a 

team; then a group of teams - with or without additional organization members who provide 

leadership and coordination - forms a unit at the next level; a group of these units form a unit at the 

next higher level, etc. The classic military paradigm of soldiers organized into squads, squads into 

platoons, platoons into batallions, batallions into regiments or brigades, then divisions, corps, and 

armies is pervasive in organizational design, even though the actual organization may not function 

in exactly that way. This paradigm is useful, however, in extending the results obtained over the 

last few years that apply to small teams to the case of large organizations. The concept of a building 

block can be used to contract organizations of arbitrary size and complexity. For example, at the 

lowest level, several types of teams with specific properties and features can be designed. The 

interactions among the organizations members can be specified using the model of the interacting 

decision maker. Now each one of these teams can be aggregated into a single model that is 

analogous to the single decision maker model. One can then design the interactions among teams 

using a variation of the exsiting algorithms. One can aggregate again and move to a higher level. 

This conceptual process leads to the utilization of the concept of "level of abstractions." One can 

see an organization at different levels of abstraction. Each level leads to a different representation of 

the organization, but all theset representations share common features. One feature in particular that 

is critical for performance is the coordination among the components of the organization as seen at 

each level of abstraction, especially when the organizations have variable structure. These are the 

subjects of this chapter. 
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4.2 ALGORITHMIC DESIGN OF DISTRIBUTED DECISION MAKING ORGANIZATIONS 

4.2.1 Introduction 

Distributed Decision Making Organizations (DMOs) are defined as those systems in which the 

capacity for reasoning is dispersed across its component subsystems.(Levis, 1984) In a distributed 

system, each function is spread over a number of nodes so that each node's activity contributes a 

little to each of several different functions. The systems characterized as DMOs carry out a number 

of functions, sometimes in sequence and sometimes concurrently. Thus, the problem of 

decomposing functions and allocating the decomposed functions to available resources is not a 

simple one. The allocation of several decomposed functions to different nodes must be done in 

such a manner that the resulting organizational structure do not violate a number of structural and 

cognitive constraints. 

A quantitative methodology for modeling, designing-and evaluating distributed decision making 

organizations has been developed at the MIT Laboratory for Information and Decision Systems by 

Remy (1986), Andreadakis (1988), and Demael (1989). In this work, an organization is 

considered as a system performing a task; the system is modeled as an interconnection of 

organization nodes (Decision Making Units, DMUs). Each organization member is represented by 

a multi-stage model. The origin of this multi-stage model can be traced back to the four stage model 

of the interacting decision maker with bounded rationality introduced by Boettcher and Levis 

(1982). The formal specification of the allowable interactions between decision makers was made 

by Remy (1986), which led to an algorithm. The Lattice algorithm generates all feasible fixed 

structure architectures that meet a number of structural and user-defined constraints. Andreadakis 

and Levis (1988) introduced an alternative model that was not based on the decision maker model, 

but on the function carried out by a resource, whether that represented a human or a machine. 

While this was a five stage model, it was very similar to the four stage one in terms of the 

allowable interactions. That model formed the basis for a different algorithm for organization 

design, the Data Flow Structure (DFS) algorithm (Andreadakis and Levis, 1988). In this approach 

to organization design, the required data flow structures for the system are determined first and 

then functions are assigned to resources. In a parallel effort, (Monguillet and Levis, 1993) 

formalized the notion of variable structure decision making organizations. Demael and Levis 

(1990) extended the earlier work and developed a methodology for modeling and generating 

variable structure distributed decision making organizations. They presented a mathematical 

framework for modeling systems that adapt their structure of interactions to the input they process. 
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The various models mentioned have been used to address a number of problems in the design, 

analysis, and evaluation of distributed decision making organizations supported by decision aids 

and decision support systems. Levis (1992) reassessed the various models and their variants and 

concluded that a slightly more general model can subsume all previous ones without invalidating 

any of the cognitive modeling or the design algorithms. The design methodology presented in this 

paper uses this generalized five stage model. 

All previous efforts mentioned above resulted in methodologies for designing flat DMO 

architectures in which the system is viewed only from a single level of detail. When it comes to 

multilevel DMOs, these methodologies are confronted by the combinatorial nature of the problem. 

On the other hand, complex distributed decision making organizations are characterized by the 

hierarchical arrangement of their subsystems, i.e., the organization of an army is done in terms of 

soldiers and officers, squads, platoons, companies, battalions, and so on. The DMOs are 

described by families of structures with each family concerned with the behavior of the system as 

viewed from a different level of abstraction, i.e., the army's organizational structure can be viewed 

in terms of interactions among battalions, or companies, or individual soldiers and officers - the 

most detailed description of the organization. This report presents a mathematical model of 

interactions among sub-organizations defined at different levels of abstraction. The model requires 

the designer to determine first the level of at which he will consider the organization. The 

organizational units at different levels are specified in terms of their constituent organizational 

units. At the lowest level, the decision making unit is a human decision maker represented by a five 

stage model (Levis, 1992). At all other levels, the decision making units are organizations in their 

own right. Depending on the particular level chosen, the designer is required to characterize with 

an arbitrary degree of precision the class of interactions among the decision making units 

comprising the organization as seen at that level. The specificity of the designer's requirements 

determines the degrees of freedom left. Lattice theoretic results are used to define a partial order 

among all allowable organizational structures. The solution set, then, can be characterized by its 

boundaries; this is an extension of the results in Remy and Levis (1988). 

The mathematical formulation of the problem is based on Petri Net theory. All the allowable 

structures are translated into Petri Net representations. The set of all allowable organizational 

structures can then be analyzed and a particular organizational structure can be chosen as a result of 

a comparison of performance with respect to some designer-defined criteria. The entire 

organization is described in terms of its decision making units. The organizational structures 

associated with these units art folded or unfolded to represent the system's architecture at different 

levels. A set of connectivity rules are formulated to translate interactions among units of the 
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organization defined at a given level to their lower level representations. The interactions that exist 

at a higher level of abstraction are translated to their more detailed description whenever an 

organization is unfolded to a more detailed representation. The connectivity rules are based on the 

concept of a multi-echelon hierarchy; the hierarchical relationships are formulated on the basis of 

messages that flow to and from the decision making units. 

The design methodology (Zaidi, 1991) is illustrated in this report with a hypothetical organization 

design. Since the results are based on Hierarchical Petri Net theory, a brief review is presented in 

the following section. 

4.2.2 Hierarchical Petri Nets 

The basic concepts of ordinary Petri Nets are not presented in this section. Introductory material on 

Petri Nets can be found in Peterson (1981), Brams (1983), Reisig (1985), or Murata (1989). 

Hierarchical Petri Nets allow the designer to create a large model composed of many sub-models, 

and isolate a segment to study its details without disturbing or altering the entire structure. They 

also provide a modular approach towards modeling a complex system. This feature is vital for 

designing complex systems that require frequent study of alternative structures during the 

development process. The hierarchical nature of the Petri Nets provides the designer an abstraction 

mechanism that 

• provides an overview and an    adequate representation of system structure, 

absent in single level system models; 

• hides details in a consistent way; 

• separates into well-defined and reusable components; and 

• supports top-down and bottom-up design strategies. 

Compound Transition 

If a sub-net of a Petri Net model is replaced by a single transition, the single transition is termed 

compound transition. It represents the aggregated effect of the processes represented by the 

transitions of the sub-net. The system with compound transitions describes the system at a higher 

level of abstraction than the one without them. 

Figure 4.1 shows a hypothetical Petri Net model of a system in which the system's functionality is 

described at the most detailed level. The transitions shown in the figure represent the processes and 
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algorithms carried out by them. The dotted box contains the processes that are to be aggregated. In 

Figure 4.2, the outlined sub-net is shown replaced by a single transition - a compound transition 

denoted by the label "HS". The sub-net that represents the compound transition at a sub-page is 

shown in Figure 4.3. The term sub-page is used in Design/CPN™, a commercially available 

software package for Hierarchical Petri Nets (Design/CPN:A Reference Manual, 1991) to denote 

pages which contain the sub-nets replaced by compound transitions and compound places. 

&! o* 

Figure 4.1   Detailed Description of a System 

p4        t4 

Compound 
El      transition 

O 

Figure 4.2  System's Description with a Compound Transition 

In Figure 4.3, the places with label "B in" or "B out" represent the port nodes. Port nodes are 

defined to be the input and output places of the sub-net; they are its connections with the 

uncompound net. On the other hand, all those places whose input and output transitions are 

defined within the sub-net are not port nodes. Port nodes are used to preserve the connectivity of 

the original net. They model the sockets for the places that exist in the preset and postset of the 

compound transition in the system's net. The places pi, p4, p5, and p9 in Figure 4.2 are defined 
as port nodes in Figure 4.3. 

77 



When it is desired to replace a sub-net by its compound transition representation care must be taken 

in selecting the boundaries of the sub-net. In order to replace a sub-net of a net by a compound 

transition, the boundaries of the sub-net should be comprised only of transitions. The boundary of 

a sub-net is defined to be the set of nodes belonging to the sub-net having at least one of their input 

and/or output nodes be nodes of the net that do not belong to the sub-net. A sub-net with at least 

one place at the boundary of the sub-net can not be replaced by a compound transition. On the 

other hand, if a sub-net of a Petri Net model is replaced by a single place, the single place is termed 

compound place. It represents the aggregated effect of the sub-net replaced by the compound place. 

P_2        12 p4  

—EQIBI out 

Figure 4.3   Sub-page Representation of the Compound Transition 

Folding and Unfolding a Net 

A Petri Net model of a system is said to be folded, if certain sub-nets of the net are aggregated by 

compound transitions and/or compound places. The folded net obtained as a result describes the 

system at a higher level of abstraction. The sub-nets replaced by compound transition and/or 

compound places are moved to the sub-pages as a result of folding the net. The original detailed 

description of the system net can be retrieved by uncompounding the compound transitions and 

compound places, i.e., by moving the sub-nets back to their original locations. A compound 

transition or a compound place, therefore, represents a sub-net stored at a sub-page with port 

nodes to preserve the original connectivity of the net. The process of uncompounding all the 

compound transitions and compound places is termed unfolding the net. In this work, the 

organizational structures represented in terms of Petri Nets are folded by creating compound 

transitions representing different sub-organizations. The processes of folding and unfolding do not 

affect the Petri Net properties of the structures; the structures obtained as a result of folding and 

unfolding are legitimate, executable, Petri Nets. The folded structures can be executed with or 

without the sub-page structures. Figure 4.4 presents a Petri Net with two of its sub-nets outlined 

by dotted boxes. The outlined sub-nets are replaced by their compound transition representation in 
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Figure 4.5. The Petri Net in Figure 4.5 is the folded version of the net in Figure 4.4. It represents 

the same system in Figure 4.4 but at a higher level of abstraction. 

p8 

-O 

Figure 4.4   Petri Net of a System 

p4     . 

Figure 4.5  Folded Petri Net 

The sub-nets that are moved to sub-pages as a result of folding are shown in Figs. 4.6 and 4.7. 

Figure 4.6 represents the net replaced by compound transition tl along with the port nodes, while 

the sub-net replaced by the compound transition t2 is shown in Figure 4.7. 

p2        t2 ^P4 

)IB| out 1 

P9 

B out 

j^5 

4 out | 

Figure 4.6  Sub-net Replaced by Compound Transition tl 
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p5        t5        pJT 

Bl   in   lO—0 

Figure 4.7   Sub-net Replaced by Compound Transition t2 

The places p4, p5, and p9 in Figure 4.5 are all the output places of the compound transition tl and 

input places of compound transition t2. If the system's behavior at a higher level of abstraction is 

desired to be depicted, the three places p4, p5, and p9 can also be represented by an equivalent 

single place p2 with input and output arcs having a weight of 3 as shown in Figure. 4.8. If the 

single equivalent place p2 models the flow of information from the aggregated processes 

represented by tl to aggregated processes represented by t2 and the three places between tl and 

t2 in Figure 4.5 represent a redundancy in the flow of information since the tokens are defined to 

be indistinguishable, then Figure 4.9 may be used where there is no weighting on the input and 

output arcs of p2. 

p1 t1 £5 P8 

O-O 
us 

Figure 4.8   Folded Version of the Net in Figure 4.4 

The net in Figure 4.9 can be unfolded to the net in Figure 4.4 by uncompounding the compound 

transitions tl and t2. The places that are represented by the equivalent place are defined in the sub- 

nets in Figures 4.6 and 4.7; therefore, whenever the compound transitions are uncompounded, all 

the places present in the original net will be retrieved from the sub-pages producing the original 

detailed description of the net in Figure 4.4. 
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Figure 4.9  Folded Version of the Net in Figure 4.4 
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The folding process described in this section will be used in the design methodology presented in 

this report. The process of folding Petri Nets also refers to a technique used to translate Ordinary 

Petri Nets to their Colored Petri Net representations. Since Colored Petri Nets are not used here, 

that folding process is not discussed; interested readers are referred to Jensen (1992). 

4.2.3 Mathematical Model 

The formal concepts of multilevel, hierarchical systems are defined in Mesarovic et. al. (1970). 

They introduced the concept of stratum for modeling organizational architectures when viewed 

from different levels of detail. The formal definition of a Stratified Decision Making Organization 

follows: 

Definition 4.1: A Stratified Decision Making Organization (SDMO) is defined to be a Decision 

Making Organization (DMO) in which a unit (or system) on a given stratum is a component unit (or 

subsystem) on the next higher stratum. In a SDMO, Decision Making Units (DMU) can be either 

Decision Making Sub-Organizations (DMSOs) or human Decision Makers (DMs) depending upon 

the level of abstraction used to represent the organizational structure of the DMO. 

The example SDMO is presented in Figure 4.10. The nodes shown by boxes are DMUs 

comprising the SDMO at different levels of abstraction. In the three-strata SDMO, the highest 

stratum, stratum 0, contains only one organizational structure, which represents the highest level of 

abstraction that can be used to describe an organization. In stratum 1, the SDMO is described in 

terms of the interactions among three DMUs shown in the figure. Each DMU in stratum 1 itself is 

comprised of two DMUs, as shown in stratum 2. Therefore, the nm (2na<) stratum description of 

the SDMO represents an elaborated and detailed structure of the interactions among DMUs in 

stratum n. The range of n is defined as 1 < n < N, where N represents the lowest possible stratum 

at which the DMUs can not be decomposed further. The determination of the value of N is 

application dependent, i.e., in human organizations, the DMUs at stratum N are human Decision 

Makers (DM). All nodes are labeled by an alphanumeric code, DMUik, where i represents the node 

number at stratum k. The set of all nodes at stratum k contains l|ikl elements, i.e., (ik = {1, 2,..., 

Ifikl } and i € |ik- 

A DMU at stratum k, where 1 < k < n, is defined as a compound node (Zaidi, 1991). A 

compound node is a decision making sub-organization (DMSO) comprised of a number of DMUs 

defined at the next lower stratum. 
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DMU 10 
Stratum 0 

Stratum 1 

Stratum 2 

DMUS2 DMU62 

Figure 4.10 Three-Strata Organization 

Definition 4.2: A compound node is a folded structure of the lower-strata DMUs and their 

interconnections. 

The five stage model of a compound node is presented in Figure 4.11. The labels SA, IF, TP, CI 

and RS are generic names for the situation assessment, information fusion, task processing, 

command interpretation, and response selection processes, respectively. (Levis, 1992) The suffix 

C represents the compound node notation of these processes. The figure also shows all the input 

and output stages of the compound node. The five stage model and the input/output interactional 

structure of a compound node are identical to the five stage model of a human DM. The physical 

interpretation of these interactions, however, varies slightly from that of a single DM. All 

organizational structures defined in any arbitrary stratum can be folded to their compound node 

representations, a fact that led to the definition of a compound node. (Zaidi, 1991) 

A compound node receives input or data x from the external environment (sensors) or from other 

compound nodes of a system. The incoming data are processed in the compound situation 

assessment (SAC) stage to get the assessed situation z. This variable may be sent to other 

compound nodes. If the compound node receives assessed data from other compound nodes, these 

data z' are fused together with its own assessment z in the compound information fusion (IFC) 

stage to get the revised assessed situation z". The assessed situation is processed further in the 
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compound task processing (TPC) stage to determine the strategy to be used to select a response. 

The variable v contains both the assessed situation and the strategy to be used in the compound 

response selection stage. A particular compound node may receive a command v' from super- 

ordinate compound nodes. This is depicted by the use of the compound command interpretation 

(CIC) stage. The output of that stage is the variable w which contains both the revised situation 

assessment data and the response selection strategy. Finally, the output or the response of the 

compound node, y, is generated by the compound response selection (RSC) stage. 

Figure 4.11 Compound Node 

Only certain types of interactions make sense within the model. (Remy and Levis, 1988; Zaidi, 

1991) They are depicted in Figure 4.12. For the sake of clarity, only the links from the i* DMU to 

the 1th DMU are presented. The symmetrical links from j to i are valid interactions as well. 

DMU: 

DMU: 

Figure 4.12 Allowable Interactions Between two DMUs 
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The binary variable ei represents the external input to a decision making compound node. The 

presence of such a link characterizes the fact that a particular DMU may receive data from the 

external environment or from another DMU located at the next higher stratum. The binary variable 

si represents the external output of a decision making compound node to processes external to the 

organizational structure considered. The binary variable Fy depicts the transmission of assessed 

situation from compound node i to compound node j; Gy models the transmission of control from 

the output of a decision making compound node to the input of another; Hy models the result or 

processed information sharing type of interaction between two decision making compound nodes; 

and Cij represents the flow of instructions or commands from one decision making compound 

node. 

Proposition 4,1: Every Decision Making Unit (DMU) can be represented by the five stage model 

shown in Figure 4.11, regardless of the stratum in which it is defined. 

The proof of the proposition follows from the folding procedure. If all the situation assessment 

stages of an organizational structure (in stratum n) are compounded together into a single 

compound situation assessment stage and a similar folding procedure is employed for all similar 

stages, one would obtain the five stage model of Figure 4.11. The five stage model so obtained 

will represent the same organizational structure at a higher level of abstraction (stratum n-1). For a 

detailed description of this folding procedure, refer to Zaidi (1991). 

The variables e,, s„ Fy, Gy-, Hy, Cy in Figure 4.12 are binary variables taking values in {0, 1}, 

where 1 indicates the presence of the corresponding link in the organizational structure at the 

stratum for which the structure is defined. Note that the value of the variable does not indicate the 

number of such links which actually exist. The variables are aggregated into two vectors e and s, 

and four matrices F, G, H, and C. 

The DMUs of the compound node are defined in stratum k+1. The structure of the compound node 

i at stratum k will be the five stage model shown in Figure 4.11. Sik+i represents the interactional 

structure of the compound node i, when the level of abstraction used to describe the structure is of 

stratum k+1. The compound node i itself is defined as a DMU for stratum k. 

The interaction structure of a compound node i, i e \xk consisting of m DMUs is represented by 

the following tuple. 

lik+i = { e, s, F, G, H, C }       i e (ik      k = 0,l,2,...,n 
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where e and s are m x 1 arrays representing the interactions of the m-DMUs. 

e = [ea]    s = [sa] a = 1,2,.. .,m me  nk+1 

F, G, H, and C are four m x m arrays representing the interactions among the DMUs of the 

organizational structure represented by compound node i. 

F = [Fab]    G = [Gab\    H = [Hob]    C = [Cab]       b = 1, 2,..., m      m €  ^k+1 

The diagonal elements of the matrices F, G, H, and C are set identically equal to zero; DMUs 

are not allowed to interact with themselves. 

Faa = Gaa=Haa = Caa = 0       a = 1, 2,..., m me   |!k+1 

4.2.4 Design Requirements 

The interactional requirements for each of the compound nodes in a multilevel organization in terms 

of its lower stratum DMUs can be translated into requirements on the arrays. The designer may 

rule in or rule out some of the links by putting l's and O's at corresponding places in the arrays. 

This introduces the notion of user-defined constraints (Ru)- 

In the illustrative example, Figure 4.10, the interactional structures of the compound nodes in strata 

1 and 0 are defined in terms of the nodes/compound nodes in strata 2 and 1 respectively.The user- 

defined constraints for DMUn, in terms of DMU12 and DMU22, are given as the tuple £12- 

"0 1 0 0 
e = [l xl F = G = 

-X 0J L0 0 

ro X ro 0 
s = [0 xl H = C = 

Lx 0- Lo 0 

The user-defined constraints for DMU21, in terms of DMU32 and DMU42, are given as the tuple 

£22- 

e = [l 1] F = 
"0 X 

G = 
0 0 

-X oJ Lo 0 

s = [l 1] H = 
"0 X 

C = 
"0 1 

-X 0. Lo 0 
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The user-defined constraints for DMU31, in terms of DMU52 and DMLfo, are given as the tuple 

-32- 

e = [l     x] 

s = [x     1] 

F = 

H = 

"0 X 

.0 0. 

"0 1" 

-0 0. 

G = 

C = 

"0 X 

-X 0. 

"0 0" 

.0 0- 

The user-defined constraints for DMU10, in terms of DMUn, DMU21 and DMU31 are given as 

the tuple Zu- 

e = [l    1    1] 

s = [l    1    1] 

F = 

H = 

ro X 0] 
X 0 X 

Li 0 OJ 

ro 0 01 
0 0 0 

Lo 0 0 J 

G = 

C = 

ro 0 0] 
0 0 0 

L0 0 oJ 
ro 0 01 

1 0 X 

Lo 0 0 J 

The x's in the arrays represent the unspecified elements or optional links. The optional links 

determine the degrees of freedom left in the design process, and potentially yield a number of 

candidate solutions to the design problem, all satisfying the user-defined constraints (Ru). 

4.2.5 Structural Requirements 

The degrees of freedom left in the design procedure result in a very large set of organizational 

structures for each compound node. However, a number of them may correspond to patterns of 

interactions among DMUs that do not make physical sense. This leads to the definition of structural 

constraints (Rs). The structural constraints are divided into two sets as follows: 

• Global Constraints: The set of constraints that must be satisfied by all the organizational 

forms regardless of the stratum for which they are defined. 

• Compound Node Constraints : The set of constraints that are defined only for those 

organizational forms which have compound nodes as DMUs. 

Let Xqk be the organizational form in stratum k defined for node q in stratum k-1 with DMUs i and 

j being the compound nodes. Then the fixed structure associated with £qk must satisfy the 

following constraints. 
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Global Constraints 

(Rl) The Ordinary Petri Net that corresponds to £qk should be connected, i.e., there 

should be at least one (undirected) path between any two nodes in the net. A directed 

path should exist from the source place to every node of the net and from every node 

to the sink. 

(R2) The Ordinary Petri Net that corresponds to Xqk should have no loops, i.e., the 

structure must be acyclic. 

(R3) In the Ordinary Petri Net that corresponds to Xqic. mere can be at most one link from 

the RS/RSC stage of a DMU i to another DMU j, i.e., for each i and j, only one 

element of the triplet {Gij, Hy, Cy} can be non-zero. The analytical expression of 

this constraint is given as: 

V(i,j)e [1..IM2 Gij + Hij + QjSl       i*j 

(R4) Information fusion can take place only at the IF/IFC and CI/CIC stages. 

Consequently, the SA/SAC stage of a DMU can either receive information from the 

external environment, or an output from another DMU. The translation of this 

constraint into mathematical terms follows: 

m 

V j e [1..IM ej + X Gij < 1 
' i= 1 

The first part of constraint Rl eliminates any organizational form that does not represent a single 

structure. The second part of Rl insures that the flow of information is continuous within the 

organizational structure. It eliminates internal sink or source places. Constraint R2 allows acyclical 

organizational structures only. This restriction is imposed to avoid deadlocks and infinite 

circulation of messages within the organization. Constraint R3 indicates that it does not make sense 

to send the same signal to the same DMU at several stages. It is assumed that once the signal has 

been received by a DMU, it is stored in its internal memory and can be accessed at later stages. 

Constraint R4 has to do with the nature of the IF/IFC stage. The IF/IFC stage has been introduced 

explicitly to fuse the situation assessments from other DMUs. It prevents a DMU from receiving 

more than one input at the SA/SAC stage (Zaidi, 1991). 

87 



Compound Node Constraints 

(Cl) In the Petri Net that corresponds to Sqk. there must be an input link to the SAC stage 

of a DMU i. This input link can be an input from the external environment or an 

output from another DMU. The analytical expression of the constraint is given as: 

m 

V je [UM ej+ £ Gij = l 
i= 1 

(C2) In the Petri Net that corresponds to Xqk, there must be at least one output link from 

the RSC stage of a DMU i. This output link can be an output to the external 

environment or to another DMU j, or both. The analytical expression is given as: 

m 

V j € [l-.IHkl] Sj+XGji^l 
i= 1 

Constraint Cl insures an input connection to a compound node DMU. Constraint C2 insures an 

output connection to a compound node DMU. The constraint enforces the presence of the RSC 

stage of a compound node. Once the SAC and RSC stages are present, all the intermediate stages 

must also be present, thus realizing the fact that all the stages should appear in a compound node 

structure. The application of constraint Rl on organizational forms with compound nodes as 

DMUs implies constraints Cl and C2. 

4.2.6'Convexity Of Constraints 

Definition 4.3: A property S defined on A is convex if and only if every element x of A located in 

the interval [a, b], where a and b satisfy S, also satisfies S. 

Proposition 4.2 (Remy, 1986): If a property S is convex on A, a convex subset Al of A that 

satisfies S is completely characterized by its minimal and maximal elements as: 

Al = {xe All3(al,bl)e Al^xAl^  al<x<bl } 

If a set is convex, its structure can be assessed with three simple tools, a partial ordering, a set of 

minimal elements and a set of maximal elements. Any element that is below one maximal element 

and above one minimal element belongs to the set. There is no need for an extensive, and possibly 

combinatorial, description of all the elements. Finding convex subsets in the set of nets defined by 
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the tuple £ is quite important since convexity allows the description of the subsets without 

resorting to a combinatorial computational problem. In that case, the set of solutions can be 

obtained in terms of the minimal and maximal elements of the set. The constraints R are properties 

on the set of nets defined by the tuples Z, since a constraint is either satisfied or violated by a given 

structure. 

Proposition 4.3: Constraints Ru are convex. 

Proof: The specifications defined by Ru are realized by placing Is and/or Os at the appropriate 

places in the arrays e, s, F, G, H, and C in order to rule in and/or rule out certain interactional 

links between DMUs. Let Z'ik+i and Z"ik+i be two elements of the set of nets satisfying 

constraints Ru, then a net Xik+i located in the interval [X'ik+i. X"ik+i] will also satisfy these 

constraints since the addition or removal of all other links except the ones placed by the user do not 

have any effect on these constraints. 

Proposition 4.4: The constraints R2, R3, R4 defined on the set of nets £ are convex. 

Proof: Let us consider R2. If a net defined by a tuple Z is acyclical, i.e., fulfills R2, then any net 

obtained by removing links from the initial net will also be acyclical. Loops can not be created in a 

loop-free structure by removing links. The same argument applies to the constraints R3 and R4. 

For a detailed proof of the proposition for constraints R3 and R4, see Remy, 1986, and Demael, 

1989. 

Proposition 4.5:  Constraint Rl defined on the set of nets X is not convex. 

Proof: The constraint Rl is not convex since it is possible to break the connectivity of a fixed 

structure by removing a link as well as by adding a link. This happens, for example, if a link that is 

added to the structure originates from a transition of the current net but does not terminate at a 

transition that was previously in the net. In that case, a transition without output place is created, 

which violates Rl. 

Proposition 4.6: Constraints Cl, C2 are convex 

Proof: The restrictions imposed by Cl and C2 are realized by placing Is at the appropriate places 

in the arrays e, s, and G in order to ensure that a compound node structure has both input and 

output links. Let X'ik+i and Z"ik+i be two elements of the set of nets satisfying constraints Cl and 

C2, then a net Sik+i located in the interval [Z'ik+h 27'ik+i] will also satisfy these constraints since 
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the addition or removal of all other links except the ones placed by Cl and C2 do not have any 

effect on these constraints. 

4.2.7 Computation Of Solutions 

It can be easily inferred from the discussion in the previous section that the set of nets that satisfy 

the user-defined constraints (Ru), denoted as W(RU), is a lattice (Birkhoff, 1948), and therefore, 

can be characterized by its boundaries, the Universal and the Kernel Nets (Remy and Levis, 1988). 

Definition 4.3: Universal and Kernel Nets: The Universal Net associated with the constraints Ru - 

ß(Ru) - is the net defined by the tuple X obtained by replacing all undetermined elements of {e, s, 

F, G, H, C] by 1. Similarly the Kernel Net - co(Ru) - is the net obtained by replacing the same 

undetermined elements by zero. 

Definition 4.4: Maximally (Minimally) Connected Organization: A maximal (minimal) element of 

the set of all feasible organizations, satisfying user-defined and structural constraints, will be called 

a Maximally (Minimally) Connected Organization, MAXO (MINO). The set of all MAXOs and the 

set of all MINOs will be denoted as Wmax(R) and W^^R), respectively. 

Maximally and minimally connected organizations can be interpreted as follows. A MAXO is a net 

such that it is not possible to add a single link without violating the set of all constraints R, i.e., 

without crossing the boundaries of the subset W(R). Similarly, a MINO is a net such that it is not 

possible to remove a single link without violating the set of constraints R. Proposition 4.1 that 

follows is a direct consequence of the definition of maximal and minimal elements. 

For the organizations with compound node DMUs, the solution set, the set of feasible 

organizations, can be completely characterized by its boundaries, the MAXOs and MINOs, due to 

the fact that all the constraints defined for compound node organizations are convex. In this case, 

constraints Cl and C2 imply Rl. Therefore, in this case, an optional link is the incremental unit 

leading from a feasible net to its immediate super-ordinate. On the other hand, the set of feasible 

organizations with human DMs as DMUs may not be characterized by MAXOs and MINOs alone 

due to the non-convexity of constraint Rl (Remy and Levis, 1988). This problem was solved by 

Remy and Levis (1988) with the definition of Simple Paths (Sp). The constraint Rl is 

automatically satisfied, if a simple path of the Universal Net is taken as the building unit from one 

feasible net to another. Propositions 4.7 and 4.8 characterize the set of feasible organizations. 
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Definition 4.5: Simple Paths: Let I be a net that satisfies constraint Rl and whose source and sink 

have been merged together into a single external place. If the source and sink places of a I are 

merged together to form an external place, then a simple path of I is defined to be a directed 

elementary circuit which includes the external place. 

Proposition 4.7: Let I be a net of a compound node of dimension m defined in a stratum k. I 
will be a feasible organization if and only if 

• I is a union of simple paths of the Universal Net, i.e., I € uSp(Ru). 

• I is bounded by at least one MINO and one MAXO. 

W(R) = {I e uSp(Ru) I 3 (Imn, Imax) e Wmin(R)xWmax(R) Imin< I < 1^} 

Proposition 4.8: Let I be a net of a compound node of dimension m defined in a stratum k, where 
k * N. X will be a feasible organization if and only if 

• I is bounded by at least one MINO and one MAXO. 

W(R) = {I e W(RU) I 3 (Imm, Sm«J € Wmin(R)xWmax(R) I^s; I < Imax} 

Once the set of feasible organizations is characterized, one of them can be selected on the basis of 

some pre-defined performance criteria. In the example being, illustrated, the computation of 
solutions resulted in the following: 

• 4 Simple Paths, 1 MAXO and 1 MINO for Xi2. 

• 10 Simple Paths, 1 MAXO and 2 MINOs for I22. 

• 6 Simple Paths, 1 MAXO and 1 MINO for I32. 

• 4 Optional links, 1 MAXO and 2 MINOs for l! j. 

The selected nets for all organizational structures are shown in Figs. 4.13,4.14,4.15, and 4.16. 

P112     ,112 

711 

«222    P322t322P422  ^22  Pg22 »522   P622 

Figure 4.13  Selected net Si2 

22 
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Figure 4.14  Selected net £22 
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Figure 4.15   Selected net X32 
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The labels shown in the figures refer to a labeling scheme used by Zaidi (1991) in order to keep 

track of the computations in the design algorithm. Figure 4.17 shows the organizations structure 

of DMUio in terms of the DMUs defined in stratum 2. This more detailed description of the 

system, the stratum 2 description, is obtained by replacing the compound node representations in 

stratum 1 by their organizational structures as depicted by Figs. 4.13, 4.14, and 4.15. This 

constitutes the unfolding of the organizational structure from stratum 1 to stratum 2. 

In Figure 4.17, all the arcs connected to places labeled as P62141. P62341. and P2321 (drawn 

shaded), show all the possible ways in which the interactions represented by these places in stratum 

1 can be translated to their stratum 2 representations. 

P,„       «112 

Rsn    'on /       p, 

UOoOOOÖ« 
'222      Oyy,   t™ 0«,    Tm 222      °3S2   t322 °422 422   °m   'ja2   "622 

'«  "» 'see '«B '« ^ 'sa2 'm 

k 610 
'710 

y 

Figure 4.17  Stratum 2 Description of the System 
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4.2.8 Solution To Connectivity Problem 

The problem of interpreting higher level interactions in terms of their lower level representation 

arises when an organizational structure is unfolded to its lower level description. A set of 

connectivity rules need to be formulated to resolve this connectivity problem. The connectivity 

rules presented in this section are based upon the multi-echelon hierarchical relationship that may 

exist among the DMUs of an organizational structure. Echelons refer to the mutual relationship 

among DMUs of an organizational structure; they define super-ordinatt and subordinate DMUs 

within an organization. In order to define the multiechelon hierarchy among organizational 

members, the messages that flow in an organization are classified into the following categories: 

1. Information, INF: Messages conveying information (INF) are further divided into three 

subcategories, inputs/outputs, assessments, and responses. 

2. Control Signals, CTR 

3. Commands, CMD 

Inputs represent observations from the external environment (e.g., from sensors). They are 

modeled by the e array. Assessments are defined to be the outputs of the situation assessment 

stage of a DMU, modeled by F type interactions. The messages containing information about the 

response of a DMU are taken as responses, represented by H type links. The control signals 

contain,' in addition to a limited amount of information about the task, an enabling signal for the 

initiation of a sub-task, as depicted by G type interactions. If the response or course of action 

selected by a DMU is dependent upon the message sent by another DMU, then such a message is 

termed a command or order; a C type interaction models such a situation. Therefore, the 

interactions of a DMU are divided into two classes: input interactions, and output interactions. 

The three classifications of the organizational data yield 23-l =7 different input/output 

interactional structures for a DMU. The seven possible ways in which a DMU can receive input or 

send output messages are given in the first column of Table 4.1. 

Let the outputs from a set of DMUs be taken as constant and let only the input interactions of the 

DMUs be considered. Then, a DMU receiving CTR or CMD type of messages is considered at a 

lower echelon than the one receiving INF messages. A number of sub-levels are also defined 

within the DMUs having INF as input interaction. The DMUs receiving responses are taken at a 

higher echelon than the DMUs receiving inputs or assessments. Similarly, DMUs with assessment 

type of input interactions are considered at a higher echelon than the DMUs with input type of INF. 
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Table 4-1 Ordering in Terms of Inputs and Outputs 

Input Corresponding Order Corresponding Order 
Interactions on Inputs, I on Outputs, 0 

INF 1 7 

INF, CTR 2. 6 

CTR 3 5 
INF, CMD .    4 4 

INF, CTR, CMD 5 3 

CTR, CMD 6 2 

CMD 7 1 

A DMU with CTR input is considered at a higher echelon than one with CMD inputs. The DMUs 
with all other combinations of input interactions fall within these three echelons. Column 2 of 
Table 4-1 shows the corresponding ordering for input interactions. A DMU with an order 1 is 
considered at the highest echelon as compared to all other DMUs with the identical set of output 
interactions. Column 3 of Table 4-1 presents the corresponding ordering for the DMU based on 
their echelon definition of the outputs. 

Figure 4.18 shows a possible interpretation of the interactional links introduced in the previous 
section. The figure maps the classes of messages presented to their Petri Net representation in view 
of the physical interpretation of the interactional links. 

a) Information, INF       e SA/SAC 

00 
i) Input 

*'Q     IF/IFC H|   U   IF/IFC 

ii) Assessment iii) Response 

b) Control, CTR 
'i   Vs_J   SA/SAC 

Ml 
c) Command, CMD 

Cl/CIC \*J     CI/CI 

Ml 
(a)  Classification of Input Interactions 

Figure. 4.18  Classification of Input and Output Interactions 
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a) Information, INF RS/RSC SA/SAC RS/RSC 

D-O"  -D-i.',     o-oH' ^V 
) Output ii) Assessment iH) Response 

b) Control, CTR RS/RSC G 

D-O 
c) Command, CMD RS/RSC C.. 

IJ 

(b) Classification of Output Interactions 

Figure 4.18  Classification of Input and Output Interactions 

An echelon index is defined for a DMU based on both input and output interactional structures of 

the DMU. A DMU is characterized as a 2-tuple, (I, 0), where I corresponds to the order defined 

by the input interactions of the DMU, and O represents the order defined by the output interactions. 

The set of all the elements of the matrix is represented by IX 

The lattice structure of II is shown in Figure 4.19; it is the result of the partial ordering that exists 

between the elements of the set IX The arrows represent the relation "is higher than", i.e., 

[Ä]—PGO means that A is higher than B. The echelon index for a DMU is defined by the 

following equation. 

After unfolding a compound node to the next lower stratum, each of the DMUs of the compound 

nodes is identified as one of the elements of the set IX Once the echelon indices associated with all 

the subsystems of the compound node are identified, a number of connectivity rules are applied to 

translate an interactional link defined in a higher stratum to its lower-stratum description. 

Rule 1: An interactional link defined at stratum k from a compound node i to another compound 

node j is translated into a single link at stratum k+1 between the subsystems of the compound 

nodes i and j. 

Rule 2: The translated lower stratum interactional link between the subsystems of the compound 

nodes i and j will connect the highest echelon-DMUs of the two sub-organizational structures. The 

highest echelons identified for the subsystems of i and j need not necessarily be the same. 
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Rule 3: If a compound node has two or more DMUs at the same highest echelon, the following 

rule applies: 

- For an output interaction the DMU with higher O index is selected. 

- For an input interaction the DMU with higher I index is selected. 

- For two or more DMUs with identical (I, O) indices, one of them is selected arbitrarily. 

Rule 4: If, in following Rules 1 to 3, constraint Rl or R2 is violated, then the next highest 

echelon-DMU will be selected to participate in the interaction. The identification of the next highest 

echelon-DMU follows the procedure presented in Rules 2 and 3. 

Echelon Index =1 + 0-2 

Echelon '0' 

Echelon ■v 

Echelon ,2. 

Echelon '3' 

Echelon '4' 

Echelon •5' 

Echelon '6' 

Echelon •r 

Echelon •8' 

Echelon '9' 

Echelon '10' 

Echelon '11' 

Echelon '12' 

Id. 1)1 

Id,  2)1        1(2,   1)] 

Figure 4.19 Multi-echelon hierarchy 

The rules stated above are applied to the organizational structure in Figure 4.17. As a result of the 

identification of echelon indices for the DMUs in stratum 2 and the application of the connectivity 

rules, the arcs connected to the places, P62i4i> P6234i> a°d P232I' drawn by solid lines in Figure 
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4.20, represent the lower level connectivity of the higher level connections. The organizational 
structure shown in Figure 4.20 represents the system's description at the lowest stratum. 

°ll»      '"2 

*>/S> 
'12 

w>o.oo4K>o-o DMU 
62 

•ao  PJB 'ae"« '« 1^ <ss2 peo 

± '610 
710 

Figure 4.20 Startum 2 Description of the System 

4.2.9 Conclusions 

An algorithmic design of the multilevel organizations has been presented. The methodology 
provides a natural, structured, and modular way for formulating and solving the problem of 
designing the organizational structure of a distributed inteligence system. An organization with 
hundreds of lower level subsystems can be modeled with less computational effort by carefully 
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defining the higher level subsystems of the organization in terms of the lower level ones. The entire 

organization can then be modeled only in terms of the higher level subsystems. Finally, all the 

structures are integrated to produce a family of structures for the organization each describing the 

organization at different level of detail. 

In the next section, coordination in organizations is addressed and the concept of the coordination 

constraint, already mentioned here, is explored. 
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4.3 COORDINATION IN DISTRIBUTED DECISION MAKING ORGANIZATIONS 

The need for Distributed Decision Making Organizations (DMOs) emerges when the amount of 

processing work exceeds the processing capacity of one single intelligent node. A task has to be 

partitioned into sub-tasks and distributed to different sub-systems; coordination among sub- 

systems becomes necessary. A distributed decision making organization consists of intelligent 

nodes, where each intelligent node carries out certain functions and interacts with other nodes. A 

processing task is distributed to different nodes. Therefore, the entire system can be viewed as an 

interconnection of sub-systems, with each sub-system performing part of the overall task. Each 

sub-system, if well coordinated, contributes to the performance of the entire organization. 

The concept of an organization embodies two meanings. One is the set of physical entities and the 

interactions between them which form the physical part of an organization. Another is the set of 

rules that govern the interactions among these entities. We call all these physical entities and their 

interactions the system, and we characterize the internal operation of the system as coordination. 

These two concepts could be successfully de-coupled at the modeling stage using Colored Petri 

Nets (Lu, 1992). The organizational model consists of two layers, the System Layer and the 

Coordination Layer. The System Layer models all the physical entities (including their interactions) 

and the processes they are designed to perform; and the Coordination Layer models the rules of 

operation that each physical entity must follow if it is to be part of the organization. 

An organization consists of components and their interactions. A component of an organization is 

defined to be a physical entity with its operating rules. It can perform a set of basic tasks that is 

relevant to the context in which the organization operates. Figure 4.21 describes an organization 

consisting of four components Cl, C2, C3 and C4. Each of them performs a certain function in a 

certain scenario. Inputl, Input2 and Input3 are its inputs; Outputl, Output2 and Output3 are its 

outputs. 

Inputl     O 

Input2    Q 

Input3    O 

DO Outputl 

ftO Output2 

GO Output3 

Figure 4.21 An Organization of Four Components 
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An organization has a variable structure, if the interactions between the components that belong to 

the organization and the process each component performs can vary in response to external or 

internal changes. 

Monguillet and Levis (1993) initiated the investigation of variable structure Decision Making 

Organizations. Based on the theory of Predicate Transition Nets (PTN) (Genrich, 1987) the 

framework of System Effectiveness Analysis was extended to compare both variable and fixed 

organizations. An appropriate mathematical framework, that of Colored Petri Nets (CPN) (Jensen, 

1992) was defined to investigate systems that adapt their structure of interactions to the input they 

process (Demael and Levis, 1994). 

Coordination defines the way a system operates. It describes how each component behaves under 

a certain scenario (e.g. what task it should perform, for what type of inputs it should wait and to 

what components it should send the outputs.). The Coordination Layer of an organization gives 

the description of the operation rules for all components in an organization. 

One sub-problem in designing an organization is designing the Coordination Layer given the 

System Layer. One objective for doing this is to specify rules on how to vary the interconnections 

of each component with other components. To obtain these rules, a Coordination Constraint must 

be considered. The nature and form of this constraint is one of the most important issues in 

designing variable structure organizations. 

This section of the report first presents an introduction to a modeling approach for constructing 

organizational structures. Then, the Coordination Constraint is addressed in detail and an algorithm 

for checking the feasibility of the coordination structure of an organization is presented. A 

mathematical framework, based on Colored Petri Nets, is developed for representing variable 

structure organizations. 

4.3.1 Colored Petri Net Modeling of an Organization 

A Coordination Strategy is defined as a function from the inputs of a component to its responses. 

For example, in Figure 4.22, T models a component Let color set A = {al, a2} be associated with 

place pi, B = {bl, b2} be associated with place p2, and C = {red, blue} be associated with p3 and 

p4. The coordination strategy can be expressed by a set of rules as follows: 

If there is a token of type al in p 1 and no token in p2, firing T results in a blue token in p3. 
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If there is a token of type a 1 in pi and a token of type bl in p2, firing T results in a red token in 

p4. 

p1 p3 

Figure 4.22 A Component with Two Input and Two Output Places 

All possible input patterns of the component need to be listed (The list should be exhaustive). For 

any possible input pattern, there exists one and only one response corresponding to that input 

pattern. This relation of responses and input patterns is a function defined on the set of input 

patterns. This is a Coordination Strategy. Design of a Coordination Strategy is to determine the set 

of all possible input patterns, and identify the corresponding response for each input pattern. 

Modeling of both the Coordination Strategies and tasks is realized using the Colored Petri Net 

formalism. The remaining part of this section shows how Coordination Strategies can be modeled 

explicitly and be separated from the tasks. 

Status Place 

Consider the example in Figure 4.22, and assume that the following rule is in the list: if there is 

one al token in pi and one b2 token in p2, then fire T to remove the al token from pi and put a 

red token in p3. The Colored Petri Net as in Figure 4.22 cannot realize this rule, because if the 

enablement condition is defined as one al in pi and one b2 in p2, the firing of T will remove also 

the b2 token in p2. The information that there is a b2 token in p2 is used only for affecting the 

firing result of transition T, but the token itself should not participate in the firing. A status place is 

introduced to implement such firing rules for a transition. The concept of a status place also leads 

to the de-coupling of an organization into two layers. 

In Colored Petri Net theory, a place can hold multiple tokens in different classes. The status of a 

place contains information on the multiset of tokens in that place. For example, if there are two red, 
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"r", and three blue, "b", tokens in place P, then the status of place P is "2r + 3b". The idea of a 

status place is to fold the information on the marking of a place into the color of a single token. 

Two situations need be considered when implementing the concept of status place. In the first case, 

the number of token classes the place can hold is limited, but the total number of tokens the place 

can hold has no limit. In the second case, the total number of tokens the place can hold is limited 

(the place has capacity limits). The ways of implementing a status place are different for the two 

cases. 

First Case 

In this case, the number of token classes the place can hold is limited. For example, place P has 

one input and one output transition (Figure 4.23) and it can hold m classes of tokens represented as 

Class 1...Class m. We are going to design a structure so that the status of place P can be obtained. 

Tin o Tout 

Figure 4.23 A Place with One Input and One Output Transition 

First we add the place S on the net which is called the status place of place P. It is a place which 

links the input transition (Tin) to place P with a bi-directional arc or two directed arcs, one from S 

to Tin and one from Tin to S (Figure 4.24). Similarly, a bi-directional arc links Tout to S. A token 

carrying an m-dimensional vector called the status token of place P always resides inside the place 

S; the vector can be represented by (ni, n2,.., nj,.. nm). 

Tin Tout 

Figure 4.24 Place P with its Status Place S 
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Methodology for realization: 

Initialize the status token in S so that 

ni = the number of tokens of Classi in P, 

n2 = the number of tokens of Classi in P, 

nj = the number of tokens of Classj in P, 

nm = the number of tokens of Classm in P. 

Set up a rule for Tin and Tout so that whenever Tin generates tokens in P or Tout withdraws 

tokens from place P, the magnitude of each nj in (ni, n2, .., nj,.. nm) is changed so that it is 

always equal to the remaining number of tokens of Class i in place P. 

Example: 

Place P can hold two classes of tokens: red and blue. The firing rule for Tin places one red and 

two blue tokens in place P; the firing rule for Tout removes one red and one blue token from 

place P. The initial marking of place P is null. 

Let us construct a status place S and its arcs as in Figure 4.25. There is a token in S with a 

two-dimensional attribute vector represented by (ni, n2). The first component corresponds to 

the number of red tokens in place P; the second one corresponds to the number of blue tokens. 

The initial marking of S is a token with color (0, 0). Assume that, before firing, the marking of 

S is (ni, n2). Let the firing rule for Tin be that the marking of S becomes (ni + 1, n2 + 2) after 

firing. Let the firing rule for Tout be that the marking of S becomes (ni -1, n2 -1) after firing. 

For example, the marking in place P is null, and the color of the token in S is (0, 0). At this 

time Tin fires and the marking of P becomes one red and two blue; the token in S changes to 

(1,2). Then Tout fires and the marking of P becomes one blue; the token in S changes to (0, 

1). The color of the token in S indicates that there is one blue token in P. Therefore, by reading 

the status token in place S, we know the number of tokens of different classes in place P (the 

status of place P). 
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Figure 4.25 shows the general case for place P when there are j input and k output transitions. 

There is always a token residing in S with attribute vector components always equal to the number 

of tokens of each different class in place P. 

Tin1 

Tinj 

Toutl 

Toutk 

Figure 4.25 Status Place for Multiple Input and Output Transitions 

Second Case 

In this case, the total number of tokens place P can hold is limited, but there are no constraints on 

the classes of the tokens. 

The methodology for implementing this status place is different from that of the first case. 

However, the structure of the status place is the same as in Figure 4.23. The implementation 

methodology is described as follows. In Figure 4.23, suppose place P can hold a maximum of m 

tokens and the initial marking is null. Let us construct a status place S as shown in Figure 4.24 

with a status token of m dimensions (xi, X2,..., xm) residing in it. The initial marking of S is a 

token with color (null, null,..., null). Make the firing rule for Tin and Tout to be: When a token 

with color id enters P, scan the vector components of the status token from left to right and the first 

null component found is changed from null to id (the color of that token is remembered by the 

status token). When a token with color id is removed from P, scan the vector components of the 

status token from right to left and the first component whose entry is id is changed back to null. It 

needs to be stated that the rule for scanning the vector is not important and will not affect the 

results. 
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Example: 

Suppose place P can hold a maximum of three tokens, and that the initial marking of P is 

empty. Construct a place S as shown in Figure 4.24. At initialization, put a token in S with 

color (null, null, null). When Tin fires, a blue token is generated in P, and the status token 

changes to (blue, null, null). When Tin fires again, it generates a red and a blue token in P; the 

status token changes to (blue, red, blue). When Tout fires, a blue token is removed from P; the 

status token changes to (blue, red, null). By reading the color of the status token, information 

on tokens in place P is obtained. 

Colored Petri Net Modeling of Coordination Strategies 

Suppose we need to implement a Coordination Strategy for the transition in Figure 4.22. In order 

to separate the Coordination Strategy and the tasks, we implement place si as status place for pi 

and s2 as status place for p2 and modify slightly the structure of the status place. Figure 4.26 

shows how the tasks and the Coordination Strategy can be separated. As shown in Figure 4.26, 

we link si and s2 by bi-directional arcs to another transition C instead of transition T. Therefore, 

Coordination Strategies are implemented in transition C and tasks are implemented in transition T. 

The following example shows how to implement a Coordination Strategy. 

Coordination 

Figure 4.26 Separating the Task and the Coordination Strategy 
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Example: 

In Figure 4.27, suppose that place P can hold three classes of tokens: red, blue and green. The 

following firing priority rule for Tout must be implemented: Priority [green] > Priority [blue] > 

Priority [red] or if there is any green token in place p then fire the green token; if there is no 

green token but there is a blue token in place p, then fire the blue token; if there are no green or 

blue tokens but a red token, then fire the red token. 

Tin1 

Tinj 

*G 
Tout 

Figure 4.27 Priority for Place p to be Implemented 

Let us construct a status place S (Figure 4.28) with a status token in it whose color is: (ni, n2, 

n3). The first component corresponds to the number of red tokens, the second to the number of 

blue tokens, and the third to the number of green tokens. The priority firing rule for Tc is: 

- if n3 > 0 put a control token in place c which will fire a green token in P 

-.   else, if n2 > 0     put a control token in place c which will fire a blue token in P 

- else, if n 1 > 0     put a control token in place c which will fire a red token in P. 

Tin1 

Tinj 

Tout 

Figure 4.28 Implementation of Priority as a Coordination Strategy 
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For example, if there is one blue and two red tokens in place P, transition Tc checks n3 first 

and finds that it is not larger than zero, then it checks n2 and finds it is larger than zero. It then 

puts a control token in place c to fire with a blue token in place P; the priority rule has been 

realized. 

The Two Layered Representation of a Component: Modeling a Component 

As we stated earlier, the organization consists of components with two layers. Figure 4.29 

explains the relationship between the two layers. The System Layer models the system. It depicts 

the tasks each component can perform and the interactions among components. The inputs 

(material/information) to the system will follow some paths in the System Layer and produce 

outputs. 

Input coordination 
information 

From other components 
(Input) 

To other components 
(Supervisory Coordination 
information) 

From other components 
(Supervisory Coordination 

information) 

To other components 
(Output) 

Figure 4.29 A Component with Two Layers 

The Coordination Layer of a component depicts the rules which govern the operation of this 

component. It also has interactions with the Coordination Layer of other components. Therefore, 

supervisory coordination information can be passed between components. This kind of 

information flow paths is different from the one in the System Layer. Information flows in the 

Coordination Layer are related only to coordination (the changes of the environment and system 

parameters, etc.). 

Input information also contains coordination information, This part of the information will flow to 

the Coordination Layer. According to a given set of coordination rules, the Coordination Layer will 

generate controls to the system to govern the behavior of the component. Because the input 
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information is local to the component, only the status information in the input places of the 

component can flow to the Coordination Layer of this component. 

Modeling the System Layer of a Component 

Figure 4.30 shows the System Layer of a component. PI, P2, ..., Pp are input places that 

represent interconnections with the external environment or other components. The transitions f 1, 

f2,..., fn model the alternative tasks the component can perform. The places 01, 02,..., Oq are 

output places through which the component will send the result to other components or to the 

external environment, c 1 and c2 are the two control places which control the behavior of the 

component, they act as the interface to the Coordination Layer. 

Figure 4.30 The System Layer of a Component 

The System Layer of a component consists of a set of transitions FS = {f 1, f2,..., fn} which will 

be executed in different processes. The interactions to and from other components are represented 

by ES = {places PI, P2,..., Pp and their output arcs to transition Input, and places 01, 02,..., 

Oq and their input arcs from transition Output}. 

The Coordination Layer has to determine what kind of inputs the components are expecting, which 

task should be chosen and to which component/s it should send the output. Places cl and c2 are 
the control places from the Coordination Layer. A token in cl with a vector (si, s2,..., sp, u) can 

control the input to the component and the task to be performed. A token with a vector (ti, t2,..., 
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tq) can control the output of the component. For example, if a token in cl is (1, 0, ..., 0, 2), the 

token in PI will be used and function f2 will be chosen. If a token in c2 is (0, 1, 0 0, 1), the 

output of the component will be sent to 02 and Oq. 

The color in the input places of a component is a tuple, which can be partitioned into two parts, I = 

Ic + Ii, where I is the tuple of the token, Ic denotes the components of the tuple which relate to 

coordination, while Ii denotes the components of the tuple which do not relate to coordination. 

Only Ic will be sent to the Coordination Layer. 

Modeling The Coordination Layer of a Component 

In the System Layer of a component, a function CS can be defined on the set of all possible input 

patterns. For each kind of input pattern, there is a response corresponding to it. The rules for the 

function constitute a Coordination Strategy for this component 

Example: 

Figure 4.31 shows a component. Suppose PI has a color set A={al, a2} and P2 has a color 

set B={bl, b2}. We define the rules as follows: 

• If there is an a 1 in PI and a bl in P2, then select f 1, and generate an output token to 01 

only. 

• If there is an a2 in PI, regardless of the marking of P2, then select f2, and generate output 

tokens in both output places 01 and 02. 

• If ..., then .... 

All possible input patterns need to be defined in the list. No two rules should be effective 

concurrently. Because the rules are defined for all possible input patterns, the input 

pattern which can enable two rules should be also defined as a rule in the list. After the input 

patterns have been defined, a Coordination Strategy or even a set of alternative Coordination 

Strategies can be defined for this component 

D- 

Figure 4.31 A Component with Two Alternative Tasks 
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The Coordination Layer of a component may have a set of Coordination Strategies. Figure 4.32 

models the Coordination Layer using Colored Petri Nets. In the figure, the System Layer of the 

component is represented by a single transition and has p input places from the System Layer of 

other components and q output places to the System Layer of other components. Places PI', P2', 

..., Pp' are the status places for input places PI, P2, ..., Pp. 

Coordination Layer 
of a Component 

Executive 
Layer 

Th« Coordtnaf on Liy«r 

Figure 4.32 The Coordination Layer of a Component 

The Coordination Layer can be sub-divided into two layers: the Supervisory Layer and the 

Executive Layer, based on the different roles they play in coordination. 

In Figure 4.32, the Executive Layer of a component consists of a set of Coordination Strategies 

CSS={Coordination Strategies in CS1, CS2, ...,CSm}, where CS1, CS2, ..., CSm are 

transitions with Coordination Strategies embedded in them. Each transition CSi (i = 1, ..., m) 

represents one Coordination Strategy. The rules are implemented in these transitions. The 

information that comes from the System Layer is denoted by SC={The information stored in the 
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Status tokens in status places PI', P2', ..., Pp'.}, and the controls to the System Layer 

CtrlS={Control Place cl,c2}. 

The Supervisory Layer consists of a transition Su and the set of rules CR = {rules embeded in Su} 

used to select the Coordination Strategy to be executed, the place C which contains the controls to 

the Executive Layer CtrlE = {Place C with the token in it} and the places Cin and Cout which 

contains the exchange of supervisory coordination information between different components 

EC = {Place Cin, Cout, Arcs to and from Su}. 

Example: 

If the color of the token in place C is 2 (Figure 4.32), then when transition TC fires, it will 

choose to go to the second branch and go through transition CS2. Therefore, the Coordination 

Strategy CS2 is used. 

Transition Su is responsible for changing the color of the token in place C to control the selection 

of Coordination Strategy in the Executive Layer. The rules for switching Coordination Strategies 

are built in transition Su. Change of Coordination Strategy may take place, when an exchange of 

supervisory coordination information takes place. The enablement condition in transition TC 

determines the circumstances under which the component needs to respond to the input Therefore, 

a component can be represented by the set {FS, ES, CSS, SC, CtrlS, CR, CtrlE, EC} 

where 

• FS is a set of tasks in the System Layer of a component denoted as {fl, f2,..., fn}. 

• ES are the interactions between components in the System Layer denoted as the set {place 

PI, P2,..., Pm and their output arcs to transition Input, place 01, 02, ...01 and their input 

arcs from transition Output}. 

• CSS is a set of Coordination Strategies in the Executive Layer of a component denoted as 

{CS1, CS2, ..., CSm}. 

SC is the coordination information that comes from the System Layer to the Executive 

Layer denoted as the set {Status tokens in places PI', P2',..., Pp'}. 

CtrlS are the controls from the Executive Layer to the System Layer denoted as {Control 

Place cl, c2}. 

CR are the rules for selecting a Coordination Strategy denoted as {rules embeded in Su}. 
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• CtrlE is the control from the Supervisory Layer to the Executive Layer denoted as {Place 

C with the token in it}. 

• EC is the exchange of supervisory coordination information between the components 

denoted as {Place Cin, Cout, Arcs to and from Su}. 

The Two Layered Representation of an Organization 

The two layered representation decouples the coordination issues and the task issues in the same 

organization. Modifying the Coordination Layer can be accomplished without affecting the System 

Layer. This is important for both implementation and analysis. 

Coordination Schemes 

During the operation, every component of the organization is associated with a Coordination 

Strategy (called active Coordination Strategy), so that the organization can perform a well defined 

task. A Coordination Scheme is the set of active Coordination Strategies under which the 

organization is performing the task. 

A Coordination Strategy and a Coordination Scheme are different. A Coordination Strategy is with 

respect to a component (a function from the input of the component to the response of that 

component). A Coordination Scheme is a set of active Coordination Strategies for all components 

with each component having one active Coordination Strategy. 

An organization may have several schemes for doing the same task under different environment 

and system changes. One scheme can change to another scheme by changing the Coordination 

Strategies of the components. This can be accomplished by exchanging supervisory coordination 

information. 

Variability and the Two Layered Representation 

In the System Layer, all the tasks and interactions between components are implemented. Selection 

of tasks and the interactions between components is done by the Executive Layer. In the Executive 

Layer, there exists a collection of Coordination Strategies, but the selection of a Coordination 

Strategy is left to the Supervisory Layer. This layer determines the active Coordination Strategy 

according to the supervisory information provided by other components. 
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Different types of variability can be dealt with by different layers of the organization. The rules for 

the first type of variability (adaptability to inputs of the organization) are implemented in the 

Executive Layer, which gets information from the input places of the System Layer to generate 

controls according to certain rules. The rules for the second (adaptability to environment changes) 

and the third type of variability (adaptability to the system changes) can be built into the 

Supervisory Layer, which changes the Coordination Strategy according to the information about 

the system and the environment. 

There are two interesting cases: 

• If there is no variability due to input. The organization will act like a fixed structure (or in 

fixed mode) under normal situations. When there are changes in the organization or in the 

environment, the system will switch to another fixed structure (or fixed mode). 

• If there is no variability due to environmental changes and system changes, the system will 

act as the model proposed by Demael (1989) (variable structure or adaptation to the inputs). 

4.3.2 Mathematical Model 

In the previous section, a model of the System Layer and the Coordination Layer have been 

presented. This section presents a mathematical model for describing an organizational structure. 

An organization processes data from n sources of information, i.e. sensors. Each sensor i 

(denoted as Si), i = [l,n], can output one letter from its associated alphabet I,= {In, la, ■-, 
Iiaj}. These alphabets describe the basic items of information. The alphabets can include the null 

element, i.e., the case where no item of information is transmitted. A supersource can be created, 

which generates events (Stabile and Levis, 1984). In Figure 4.33, place I models the supersource, 

whose color set is I =11 * I2 * ... * In- Transition Tl distributes the information sources from the 

super source to the appropriate places Ii, i = [1, n]; Ii is the color set for place Ii. Transitions 

Sensor 1, Sensor 2, ..., Sensor n model the n sensors of the organization, which detect 

information sources 

II, I2, ..., In, respectively. Place Output 1, Output 2, ..., Output 1 model the outputs of the 

organization. They converge through transition T2 into place Sink. 

Definition 4.6: Suppose Ii, I2,..., In are input color sets for the System Layer. An input token to 
the System Layer is represented by an n-dimensional vector v = (vi, V2,..., vn) where vi e Ii, 

V2 € I2,..., vn e In, i.e. v € Ii * I2 * ...* In- Therefore, the cross product of the input color sets 

forms an n-dimensional input space. In the input space, there is a subspace which includes all 

feasible input vectors. We call this subspace Feasible Input Domain I or Feasible Input Space. An 
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element in the Feasible Input Domain, is called an Input Situation v e I. A token in the System 

Layer will not change its color when it moves through the organization. 

i T1 

O-A 
I        I2 

Sensor 1 

Sensor 2 

Organization 

Sensor n 

Output 1 

Figure 4.33 Information Sources and Sensors of an Organization 

Assumption 4.1: The input color sets are assumed to be finite and discrete. 

Definition 4.7: The System Layer is a Colored Petri Net representing all the components and their 

interactions. Each component is represented by a single transition. Places and arcs represent 

connectivity between components. 

Here, the changes of system parameters are regarded as inputs to an organization. They are special 

inputs in the sense that they come from within the system itself. However, the inputs to the System 

Layer and the environment changes come from outside the organization. 

Assumption 4.2: If the supersource place and the sink place are merged together into a single 

place, then the nets are marked graphs. 

Fixed Structures and Variable Structures 

Given the System Layer of an organization, and a token with color v, v e I, the paths which the 

token follows through the System Layer and the task each component performs forms a fixed 

structure. An example is used here to illustrate the two concepts. 

Figure 4.34 shows the System Layer of an organization. The shaded box indicates the boundaries 

of the organization. Cl, C2, C3 and C4 are four components. Suppose there is one task in each 
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component (task f 1 for Cl, task f2 for C2, task f3 for C3, task f4 for C4.). When there is no input 

to a component, it remains idle. Suppose the color set for place I is I = A * B, where 
A= {al,a2} and B = {bl, b2}. 

Sink 

Figure 4.34 The System Layer of an Organization 

Figure 4.35 shows a fixed structure for Input Situation (al, bl). When a token with color (al, bl) 

is put in place I, it follows the bold path through the organization; Cl does task fl, C2 does task 

f2, C3 does task f3, and C4 remains idle. The shaded path, while it exists physically, is not 

utilized when a token with color (al, bl) passes through. Let us denote this fixed structure as 

(FS1). For tokens with color (al, b2), there is also a fixed structure corresponding to it, denoted 

as (FS2) (Figure 4.36). In this case, Cl does task fl, C2 does task f2, C3 does task f3, and C4 

does f4. Similarly, for Input Situation (a2, bl), there is a fixed structure corresponding to it, 

denoted as (FS3) (Figure 4.37). In this case, Cl does task fl, C2 does task f2, C3 does task f3, 

and C4 remains idle. For Input Situation (a2, b2), the fixed structure corresponding to it is the 
same as that of (al, bl) denoted as (FS1) (Figure 4.35). 

Sink 

Figure 4.35 Fixed Structure FS1 for (al, bl) 
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Sink 

Figure 4.36 Fixed Structure FS2 for (al, b2) 

Figure 4.37 Fixed Structure FS3 for (a2, bl) 

A variable structure VS is obtained by folding the four fixed structures. VS is denoted as VS = 

{FS1 under Input Situation (al, bl), FS2 under Input Situation (al, b2), FS3 under Input 

Situation (a2, bl), FS1 under Input Situation (a2, b2)}. Thus the variable structure varies for 

different inputs. 

Mathematical Representation of the System Layer 

An arc is represented by a function defined on the Feasible Input Domain fi: / --> {0, 1}. fi(v) = 

0 means the token with color v cannot traverse this arc; fi(v) = 1 means the token with color v can 

traverse the arc. The function defined on the arc can be represented by an array if the elements in / 

are finite and discrete. 

A transition/component is also represented by a function defined on the Feasible Input Space ft: / 

--> FS, where FS is the set of alternative tasks the transition/component may choose from. The 
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firing modes of a transition can be represented by an array, if the elements in FS are finite and 

discrete. 

If all the arrays of the arcs and transitions/components have been defined, a variable structure is 

defined. Therefore, we can represent the variable structure by an incidence matrix, except that the 

entries of the matrix are arrays instead of scalars. 

The variable structure represented by arrays can be unfolded into a set of fixed structures with each 

fixed structure corresponding to one Input Situation, and vice versa. If we fold the three distinct 

fixed structures described in Figures 4.35 through 4.37, we can obtain a variable structure with its 

arcs and transitions annotated by arrays. For example, arc rl 1 and transition C3 are annotated as 

shown in Figure 4.38. It is obvious that arc rl 1 is included in the fixed structure corresponding to 

Input Situation (al, b2), but not included in fixed structures corresponding to other Input 

Situations. Transition C3 executes function O under all Input Situations. 

b1   b2 b1    b2 
a1 0    1 a1 f3    f3 

a2 0    0 a2 f3   f3 

Arn ay for r1 1                    Arr ay for C3 

Figure 4.38 Arrays for Arc rl 1 and Transition C3 

4.3.3 Coordination Constraint 

Definition 4.8: A Partition Process P on a set S is a process of creating a set P = {Si, S2,..., Sn} 
where Si, S2, ..., and Sn are subsets of S. For all elements in P, S\ n Sj = <(>, if i * j, where 

Si e P and Sj e P. Si u S2 u ... u Sn = S. Si € F , i = [1, n], is called a partition of S. 

Definition 4.9: Let two Partition Processes be defined on set S, P={Spi, Sp2 ..., Spn} where 

Spi, SP2,..., Spn are disjoint subsets of S, and Ö={Sqi, Sq2,..., Sqm} where Sqi, Sq2,.... Sqm 

are disjoint subsets of S. The operation MERGE is defined as R = P MERGE Q if R = 

{Sri, Sr2,..., Sri} is a set of subsets of S generated by the process defined in Figure 4.39. 

Proposition 4.9: If R = P MERGE Q, then R is a Partition Process. 

118 



yes 

[   Beg in 

= 1,j=1 

I 
k = i    o- 

Set Sri=SpjnSqk 

I 
i = i + 1 

k = k+l 

—5~ —ZT" 

no 

no 

Figure 4.39 Define R = P MERGE Q 

Proof: 

Let Sri n Srj = (SPü n Sqji) n (Spi2 n Sqj2). If i * j, then either il * i2 or jl * j2 (If il = i2 

and j 1 = j2 both stand, then Sn = Srj means that i = j, contradictory with the assumption i * j). 

Suppose il * i2. Sn n Sn- = (Spn n SPi2) n (Sqji n Sqj2) = 0. 

Sri   U   Sr2  U   ...   U   Sri =   uJ=l-n [Mc=l,m(SpjnSqk)]    _     Uj=i,n[Spjn(uk=i,mSqk)]    = 

^j=i,n[SpjnS] = Uj=i,nSpj = S 

For example two Partition Processes are defined as /^{Spi, Sp2, Sp3} (with Spi={al, a2}, 

Sp2 = {a3, a4, a5, a6.}, Sp3 = {a7}) and Q={Sqi, Sq2, Sq3} (with Sqi = {al, a2}, Sq2 = 
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{a3, a4, a5}, Sq3 = {a6, a7}). When the procedure defined in Figure 4.39 is followed, it 
forms a set {Sri, Sr2, Sr3, Sr4} (with Sri = {al, a2}, Sr2 = {a3, a4, a5}, Sr3 = {a6} and Sr4 = 

{a7}). 

Let us define a function F on set S partitioned by a Partition Process into P = {Si, S2, ...,Sn}, 
and let F have the following properties: F(x) = F(y) if and only if xe Si, ye Sj and i = j. That is, 

the function F evaluates to the same value for all the elements in the same partition, and evaluates 
to different values for elements in different partitions. Actually, function F is nothing more than 
another representation of a Partition Process. Given the function F , we can recreate the Partition 
Process by simply dividing set S according to the value of x (xe S). 

Proposition 4.10: A function F for a Partition Process P is defined on set S. A system (system R) 
is defined by a function R(z), which means that if the input to system R is z, then the output of the 
system is R(z). Let x, y e S, and let F(x) and F(y) be inputs to system R, then the output of 
system R are R[F(x)] and R[F(y)], respectively. If x, y € Sj, then R[F(x)] = R[F(y)]. 

Proof: 
x,yeSi ==>   F(x)=F(y). ==>   R[F(x)] = R[F(y)] 

F(x) System R R[F(x) 

Figure 4.40 A System Described by R[z] 

Proposition 4.11: Let n functions be defined on set S: Fl on Partition Process PI; F2 on 
Partition Process P2; ...; Fn on Partition Process Pn. A system (system R) is defined by a 
function R(zl, z2,..., zn), which means that if zl, z2,..., zn are inputs, then R(zl, z2,..., zn) is 

the output of the system. 

Let x, y e S, and let Fl(x), F2(x), ..., Fn(x) and Fi(y),F2(y),...,F/i(y) be inputs of a 

system, and R[F7(x), F2(x),..., Fn(x)] and R[Fi(y),F2(y),...,F/i(y)] be the outputs of the 

system, respectively (Figure 4.41). 
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Let P = PI MERGE P2 MERGE P3 ....MERGE PH. Denote Partition Process P 

{Si, ...,Sn}. 

If x, y € Si( then R[F7(x), F2(x) ..., Fn(x)] = R[F/(y), F2(y), ..., Fn(y)]. 

FJM. 

FZUL 

FnttL 

System R R[F1 (x), F2(x)  Fn(x) 

Figure 4.41 A System Described by R[zl, z2, ...,zn] 

Proof: 

x, y e Si ==> Si= Sipin S2P2n ... n Snpin (Where Sipie PI, S2P2e P2, ..., Snpne 

Pn ). ==> x, y 6 Sipi; x, y e S2P2 ; ... ; x, y € Snpn. ==> F/(x) = F7(y); 

F2(x) = F2(y); ...;F/t(x) = Fn(y). ==> R[Fi(x), F2(x), ..., Fn(x)] = R[F/(y), F2(y), 

-, F/i(y)]. 

In the organization, each transition (or component) is connected to some sensors through some 

paths. Therefore, it is possible that a component only accesses a limited set of alphabets. This 

situation can be modeled by a Partition Process P defined on the Feasible Input Domain for a 

component. Let the input to the component be F(x), x € S; the component is not able to make 

different responses if x is located within the same partition of P. For example, let an aircraft have 
speed v and size s as its characteristics, denoted as x = (v, s), where v e V = {5, 6, 7} and 

s e S = {small, medium, large}. If a speed sensor can only sense the speed of the aircraft, 

whatever its size, we may partition the space V*S into three subsets: {(5, small), (5, medium), 

(5, large)}, {(6, small), (6, medium), (6, large)}, and {(7, small), (7, medium), (7, large)}. 

Function F(x) can be considered as the output of the speed sensor. If F(x) is the input of a 

component in the organization, the component can not respond differently to F(xl) and F(x2) if 

F(xl) = F(x2) (or xl and x2 are in the same partition) according to the proposition. 
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If a component in an organization has multiple inputs, all information from the inputs can be used 

to distinguish the current Input Situation according to the proposition. 

In the variable structure design problem, for each Input Situation, we usually can get a set of fixed 

structures which is able to perform the required tasks. Take one structure from each set, and fold 

them together. A variable structure is obtained. For example, suppose the Feasible Input Domain is 

A * B where A = {al, a2} and B = {bl, b2}. As shown in Figure 4.42, for Input Situation 

(al,bl), there is a set of fixed structure {FS11, FS12, FS13, FS14}, for Input Situation (al,b2), a 

set of fixed structure {FS21, FS22, FS23}, for Input Situation (a2, bl), a set of fixed structure 

{FS31, FS32, FS33, FS34, FS35}, and for Input Situation (a2, b2), a set of fixed structure 

{FS41, FS42, FS43, FS44}. Take FS12 for Input Situation (al.bl), take FS21 for Input 

Situation (al,b2), take FS34 for Input Situation (a2,bl), take FS43 for Input Situation (a2, b2). 

A variable structure VS is obtained by folding these four fixed structures. 

TT 
(a1, b1) 

(a1, b2) 

rS31      flf^^pF 
(a2' b1)^ # J§ •FS; 

(a2, b2) 

fg1 ^S22    cÜ3 

i41« i43t 
W     FS42m    FS44 

0  # ' #     ) Variable 
Structures 

Feasible 
Variable 
Structures^ 
(Coordination 
Schemes) 

Discard 

Figure 4.42 Find Feasible Variable Structures 

Because the selection of a fixed structure from each set to form a variable structure is arbitrary, if 

there are m Input Situations and there is a set of nj fixed structures corresponding to the ith Input 
m 

Situation, then there will be Y[ni variable structures. But not all these variable structures are 
i= 1 

realizable. Only the variable structures which meet the Constraint are feasible. 
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Coordination Constraint 

Let each component of a system be associated with a Partition Process P on the Feasible Input 

Space. P is defined according to the accessed information by that component, such that the tokens 

(whose colors are represented by an Input Situations) are indistinguishable if they are located in the 

same partition. 

A component is said to meet the Coordination Constraint if it does not respond differently to the 

tokens whose colors (represented by an Input Situation) are located in the same partition. 

Variable interactions between two components Cl and C2 must be coordinated on sources of 

information that are accessed jointly by them (directly or indirectly). The stage Cl must determine, 

based on some information it has processed, whether it has to send a message to C2. Similarly, the 

role that contains C2 must infer from some of the information it has already received, whether or 

not it must wait for a message or information from Cl before initiating process C2.(Demael, 

1989). The above requirements are termed as Coordination Constraint. Generalizing these 

requirements, a transition or component in the CPN representation is said to meet the coordination 

constraint if it is not required to respond differently for situations which are indistinguishable to it. 

A variable structure is said to meet the coordination constraint if all its components meet the 

coordination constraint. A structure satisfying the constraint is feasible in the sense that it can be 

realized. 

The Algorithm 

Figure 4.42 describes the procedure to find feasible variable structures. At the first stage, variable 

structures are constructed by arbitrarily choosing a fixed structure from each set of an Input 

Situation. At the second stage, an algorithm is used to check the Coordination Constraint for each 

generated variable structure. Only the variable structures which meet the Coordination Constraint 

are retained and stored as feasible variable structures. The Coordination Constraint is like a filter 

which rules out the unrealizable variable structures. In this section, an algorithm to check the 

Coordination Constraints is proposed. 

The Coordination Constraint described in the previous section indicates that the entries of arrays of 

output arcs and the component must be the same within a partition of the Partition Process of a 

component. The partition processes for the input arcs of a component with multiple inputs are dealt 

with a different scheme. For components with multiple inputs, the entries of every array of the 

input arcs must be the same within a partition of all the Partition Process associated with the input 
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arcs. The process is repeated for every input arc of a component with multiple inputs. Figure 4.43 

shows examples of checking the Coordination Constraint. The arrays in Figure 4.43 could be of an 

arc or component. The solid lines partition each array into six partitions. The entries in each 

partition of the first array are the same; consequently, the Coordination Constraint is satisfied. In 

the second case, one of the partitions has two different elements. There the Coordination 

Constraint is not satisfied. Therefore, if we can find the Partition Processes for all the components 

in the organization, and find that they meet the Coordination Constraint, a realizable or feasible 

variable structure is obtained. 

1 0      0 

0 0     0 

1 1    1 

Meets the 
Coordination Constraint 

different 

1 1' \> 

0 0      0 

1 1     1 

Does not meet the 
Coordination Constraint 

Figure 4.43 The Coordination Constraint 

Before introducing the algorithm, the concept of a Partition Process for an arc, and three basic 

procedures for deriving the Partition Process need to be introduced. The Partition Process of an arc 

is the information which an arc carries. If the component has m input arcs with their Partition 

Processes denoted as PI, P2, ...Pm, and the Partition Process of the component is denoted as 

Q, then Q = PI MERGE P2 MERGE ... MERGE Pm. Figure 4.44 shows an example of 

deriving the Partition Process for a component given the component array and the input arc 

annotations. 

Given the Partition Processes for a component and the array for an output arc, the Partition Process 

for an output arc from a component is produced by erasing the part of the partition that is within a 

zero region in the array of the output arc. In other words, the partitions whose entries are 0 are put 

together into one partition. Figure 4.45 shows an example. It should be emphasized that the two 

zero regions are in one partition of the arc. The information which a component accesses is carried 

by the tokens coming to this component Zero regions in the array of an arc mean that no token can 

go through this arc. Therefore, the information contained in the token cannot pass through either. 

124 



This is the reason why the partition in zero regions need to be removed. For multiple output arcs of 

a component, the Partition Process for each output arc is generated independently. 

Partition Process P^\ 
for arc r1 

XXX 

XXX 

XXX 

Partition Process P2 

for arc r2 

c> 
XXX 

XXX 

XXX 

Q=P1 MERGE P2 

Partition Process Q 

for the transition C 

Figure 4.44 Derivation of the Partition Process for a Component 

o 
XXX 

XXX 

XXX 

and 

Partition Process for 
the transition C 

The array for an 
output arc r 

0 o   o- 

0 1    1 

1 0     0/ 

0 0     0 

0 1    1 

1 0     0 

0 0     0 

0 1    1 

1 0     0 

These two regions are in 
ne partition 

Partition Process for 
the output arc 

Figure 4.45 The Partition for an Output Arc 
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Since the nets analyzed in this thesis are marked graphs, if both sink and source are merged and 

under compact form, a place in an organization has only one input arc and one output arc. 

Generating the Partition Process of the output arc of a place given the Partitions Process of the 

input arc of the place is essentially an identity operation. 

The flow chart of the proposed algorithm is shown in Figure 4.46. An example is provided to 

illustrate this algorithm in the reaming part of this section. Figure 4.47 shows the System Layer of 

an organization. Arrays for arcs and components are defined in Figure 4.48. Suppose the Feasible 

Input Domain is A * B, where a = {al, a2, a3} and B = {bl, b2, b3}. Components Cl and C2 are 

sensors. Suppose Cl can only sense alphabet letters in set A and C2 can only sense alphabet 

letters in set B. 

Initialization: 
Entaf Partition Procaaaat for input area to all sanaora. 
Annotate all thaaa area by tf» Partition Procaaaaa. 
Lat A ba tha sat of al component« it tha organization. 

ftamova componant b from B    \ 

I 

Not« realizable 
/ariable structure 

'reduce Partition Processes for the output 
arcs of componant b. 
*nnotat» thaaa output area. 

Sat tiie Partition Processes for the Input area of tt 
next component produced in the previous «tap. 
Annotate these input area. 

Figure 4.46 An Algorithm for Checking the Coordination Constraint 
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Figure 4.47 The System Layer of an Organization 

a1      a2      a3 a1      a2      a3 

b1 

b2 

b3 

b1 1 1 1 

b2 1 •   1 1 

b3 1 1 1 

1      1 

1      1 

1      1 1 

Array for arcs ra Array for arcs rb 

a/I a2 a3 

b1 0 0 1 

b2 0 0 1 

b3 0 0 1 

a1 a2 a3 

b1 1 1 0 

b2 1 1 0 

b3 1 1 0 

al a2 a3 

b1 0 0 0 

b2 0 0 0 

b3 1 1 1 

Array for arc M Array for arcs r2, r3 Array for arcs r4, r5 

a1 a2 a3 

b1 1 1 1 

b2 1 1 1 

b3 0 0 0 

a1 a2 a3 

b1 1 0 0 

b2 1 0 0 

b3 1 1 0 

a1 a2 a3 

b1 0 1 0 

b2 1 1 0 

b3 1 0 1 

Array for arcs rfl, r7. MO Array for arcs r8 Array for arc r9 

al a2 a3 

b1 (1 f2 f2 

b2 fl f2 (2 

b3 (1 t2 f2 

a1 a2 a3 

b1 f3 (3 (3 

b2 13 (3 13 

b3 f3 (3 f3 

al a2 a3 

b1 (4 f5 idle 

b2 (4 f5 Idle 

b3 (5 (5 (6 

a1 a2 a3 

b1 t2 (2 f2 

b2 (2 f2 (2 

b3 idle idle idle 

Array for C1 Array for C2 Array for C3 Array for C4 

Figure 4.48 Arrays for the Arcs and Components 
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The first step in the algorithm is the initialization part. The Partition Process for each input arc of 

each sensor needs to be entered by the user as initial conditions. By analyzing the nature of the 

sensors C1 and C2, we determine that the Partition Processes for the input arcs to the sensors are 

as shown in Figure 4.49. The initial part of the algorithm annotates arcs ra and rb, and defines set 

A = {Cl, C2, C3, C4}. A' is also set to be A = {Cl, C2, C3, C4}. 

a1 a2 a3 

bl X X X 

b2 X X X 

b3 X X X 

a1 a2 a3 

b1 X X X 

b2 X X X 

b3 X X X 

partition for ra partition for rb 

Figure 4.49 Partition Processes for Arcs ra and rb 

The part of the algorithm outlined in Figure 4.47 is used to identify components that have not been 

traversed, but whose input arcs have all been annotated. Suppose Cl is selected first (ra is 

annotated) and go to the next steps. 

Given the Partition Process for arc ra, the Partition Process for C1 is derived, and the Coordination 

Constraint is checked (All the arrays of the output arcs and the component are checked). The result 

are illustrated in Figure 4.50. It is found that C2 meets the Coordination Constraint. The algorithm 

continues. 
a1 a2 a3 

b1 

a1 a2 a3 

61 X > X X X X 

b2 X > X b2 X X X 

b3 X > X b3 X X X 

Partition Procas* for m 

a1      a2      a3 

Partition Process for C1 

a1      a2     a3 a1      a2      a3 

b1 0 0 1 b1 1 1 0 b1 f1  . f2 (2 

b2 0 0 1 b2 1 1 0 b2 fl (2 (2 

b3 0 0 1 b3 1 1 0 b3 fl (2 f2 

Array for arc rl Array for arcs r2 
Meet the Coordination Constrait 

Array for C1 

Figure 4.50 Partition Process for Cl and Checking the Coordination Constraint 
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Given the Partition Process for Cl, the Partition Processes have been derived for output arcs rl 

and r2. The result is shown in Figure 4.51. The Partition Process for r2 is passed to the input arc 

r3 for component C3 (It is an identity operation) and r3 has the same Partition Process as r2. 

During the procedure, arcs rl, r2 and r3 are annotated. 

a1 a2 a3 

b1 X X X 

b2 X X X 

b3 X X X 

a1 a2 a3 

b1 0 0 1 

b2 0 0 1 

b3 0 0 1 

a1 a2 a3 

b1 0 0 1 

b2 0 0 1 

b3 0 0 1 

a1 a2 a3 

b1 0 0 1 

b2 0 0 1 

b3 0 0 1 

Array lor arc rl Partitioning an array Partition Process for arc n 

Partition Process lor C1 

a1 a2 a3 

b1 1 1 0 

b2 1 1 0 

b3 1 1 0 

a1 a2 a3 

b1 1 1 0 

b2 1 1 0 

b3 1 1 0 

a1 a2 a3 

b1 1 1 0 

b2 1 1 0 

b3 1 1 0 

Array for arcs r2 Partitioning an array Partition Process lor arc r2 

Figure 4.51 Finding the Partition Processes for Output Arcs of Cl 

Cl is removed from A', and A is set to {C2, C3, C4}. Since A' is not empty, go back to the 

loop. 

Next, component C2 is selected (because rb is annotated). The Partition Processes for C2 is 

derived and is found to meet the Coordination Constraint. The Partition Processes for arcs r4, r6, 

r5, and r7 are derived and annotated. These results are shown in Figure 4.52. C2 is removed from 

A (A' = {c3, c4}). The algorithm continues. 

Since the component C3 has multiple inputs the partition process associated with arc r3 is applied 

to partition the array associated with r5 and vice versa. A simple inspection reveals the fact that 

several partitions in both arrays have differenct entries, making the variable structure infeasible. 

The same result can be achived by generating the partition Process for C3 and checking the 

partitioned array for inconsistencies. The Partition Process for component C3 can be generated by 

applying the MERGE operator to the Partition Processes for arcs r3 and r5 (shown in Figure 

4.53). The Coordination Constraint is checked for C3. We find that one partition of the Partition 

Process of r9 has different entries. Therefore, it does not meet the Coordination Constraint (Figure 

4.54). This is not a realizable variable structure. 
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a1 a2 a3 

b1 X X X 

b2 X X X 

b3 X X X 

Partition Process for C2 

a1 a2 a3 

b1 0 0 0 

b2 0 0 0 

b3 1 1 1 

Array for arcs r4, r5 

a1 a2 a3 

b1 1 1 1 

b2 1 1 1 

b3 0 0 0 

a1 a2 a3 

b1 0 0 0 

b2 0 0 0 

b3 1 1 1 

Partition for arcs r4, r5 

a1 a2 a3 

b1 1 1 1 

b2 1 1 1 

b3 0 0 0 
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Figure 4.52 The Partition Processes for C2, r4, r5, r6 and r7 
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Let us take a close look at Figure 4.47 (the System Layer) and Figure 4.48 (the arrays for all arcs 

and components). Component Cl only senses the alphabet in color set A. Cl can make the 

decision to send token a3 into the upper place though arc rl and send token al and a2 into the 

lower place through arc r2 (according to the arrays in Figure 4.48). Component C3 can receive 

tokens al or a2, but never a3. If C3 receives a token al, the Input Situation could be (al, bl), (al, 

b2) or (al, b3), but it cannot be sure exactly which one it is, based on this information. 

Component C2 sends token b3 to component C3 but sends token bl or b2 to component C4. If C3 

receives a token b3, it knows the current Input Situation is (al, b3), (a2, b3) or (a3, b3), based on 

this information. 

By combining these two pieces of information, C3 can deduce: 

• If a token al comes from r3 and no token comes from r5, it can deduce that the current 

Input Situation might be (al, bl) or (al, b2), but it is not sure exactly which one. 

• If a token al comes from r3 and a token b3 comes from r5, it can deduce that the current 

Input Situation is (al, b3) for sure. 

• If a token a2 comes from r3 and no token comes from r5, it can deduce that the current 

Input Situation might be (a2, bl) or (a2, b2), but it is not sure exactly which one. 

• If is a token a2 comes from r3 and a token b3 comes from r5, it can deduce that the current 

Input Situation is (a2, b3) for sure. 

• If is no token comes from r3 and a token b3 comes from r5, it can deduce that the current 

Input Situation is (a3, b3) for sure. 

• If is no token comes from r3 and r5, it can deduce that the current Input Situation might be 

■ (a3, bl) or (a3, b2), but he is not sure exactly which one (This based on the assumption 

that C3 knows there is an input). 

Take a look at array for arc r9: it requires component C3 to send a token for Input Situation (al, 

b2) and not to send a token for Input Situation (al, bl). But for both Input Situations, C3 receives 

a token al from r3 and no token from r5. It cannot distinguish whether it is Input Situation (al, b2) 

or (al, bl). Therefore the whole variable structure is not realizable. 

4.3.4 Conclusions 

Folding fixed structures into a realizable variable structure is an important issue in organization 

design applications. A component must have the necessary information to vary its structure or 

process an incoming information, i.e., if the inputs to the component are the same for two Input 

Situations, the component should not be able to produce different responses for these two Input 
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Situations. This property is expressed as the Coordination Constraint which is an extension of a 

constraint (Constraint RIO) proposed by Demael (1989). The constraint has been addressed in 

detail and an algorithm has been developed for checking it. 
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CHAPTER V 

CONCLUSIONS AND MATTERS OF RECORD 

5.1 CONCLUSIONS 

This three year effort was, in a sense, a continuation and expansion of the research started under 

the "Distributed Tactical Decision Making" initiative by both co-principal investigators. A deliberate 

attempt was made to synthesize approaches from cognitive sciences, computer sciences, and 

system theory. The results of that effort have been presented in Chapters n, HI, and IV. However, 

this is not the complete record of the research. Selected results were presented so that this final 

report is self-contained. A more complete record of the research is obtained, if one considers all the 

publications that have been produced as a result of this project. This list is presented in section 5.2. 

During the last year of research, a set of new problems were identified whose solution is essential 

for pursuing the development of a theory of coordination in variable structure organizations. In the 

past, it was possible to adapt already existing results in the theory of discrete event systems, Petri 

Nets, and Colored Petri Nets, so that they can be used in the context of the analysis and design of 

decision making organizations. This is not the case any more. It has become necessary to extend 

the existing theory and develop new algorithms for its implementation. This has led to several basic 

research topics, appropriate for Master's and Ph.D. theses, that are currently under way. Since 

these theses are in progress, their description has not been included in this report. However, the 

expected results to be documented in the future will owe their existence to this project. The list of 

students who have participated and contributed to this project is given in section 5.3. 

5.2 DOCUMENTATION 

5.2.1 Theses 

S. A. K. Zaidi, "On the generation of Multilevel, Distributed Intelligence Systems using Petri 
Nets," MS Thesis, Report GMU/C3I- 113-TH, C3I Center, George Mason University, 
Fairfax, VA, November 1991. (Advisor: Prof. Levis) 

Z. Lu, "Coordination in Distributed Intelligence Systems," MS Thesis, Report GMU/C3I- 120-TH, 
C3I Center, George Mason University, Fairfax, VA, May 1992. (Advisor: Prof. Levis) 
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A. Sadigh - MS Thesis due February 1994. (Advisor: Prof. Lehner) 

Z. Jin - MS Thesis due February 1994. (Advisor: Prof. Levis) 

A. Zaidi - PhD Thesis due December 1994. (Advisor: Prof. Levis) 

T. Zhang - PhD Thesis due June 1995. (Advisor: Prof. Levis) 

5.2.2 Papers in Refereed Journals 

Perdu, D. M., and A. H. Levis, "Requirements Determination Using the Cube Tool Methodology 
and Petri Nets," IEEE Trans, om Systems Man and Cybernetics, SMC-23, No. 5, Sept./Oct. 
1993 

Lehner, P.E., and Ulvila, J. W., "A Note on the Application of Classical Statistics to Evaluating 
the Knowledge Base of an Expert System," IEEE Transactions on Systems, Man, and 
Cybernetics, Vol. 23, No. 2, 1993, pp. 563-569. 

Levis, A. H., Moray, N. and Baosheng Hu, "Task Allocation and Discrete Event Systems," 
Automatica, February 1994. 

Johannsen, G., A. H. Levis, and H. Stassen, 'Theoretical Models in Man - Machine Systems and 
their Experimental Validation," Automatica, February 1994. 

Demael, J. J. and A. H. Levis* "On Generating Variable Structure Architectures for Decision 
Making Systems," Information and Decision Technologies,  1994. 

5.2.3 Chapters in Books 

Levis, A. H., "Modeling and Design of Distributed Intelligence Systems," in Introduction to 
Autonomous and Intelligent Control, P. J. Antsaklis and K. M. Passino, Eds., Kluwer 
Publishers, Boston, MA, 1993. 

Levis, A. H., "A Colored Petri Net Model of Command and Control Nodes," in Toward a Science 
of Command Control and Communications, Carl R. Jones, Ed., AIAA Press, Washington, 
DC1993. 

Monguillet, J. M., and A. H. Levis, "Modeling and Evaluation of Variable Structure 
Organizations," in Toward a Science of Command Control and Communications, Carl R. 
Jones, Ed., AIAA Press, Washington, DC, 1993. 

Jin, V. Y., and A. H. Levis, "Impact of Organizational Structure on Team Performance: 
Experimental Findings," in Toward a Science of Command Control and Communications, 
Carl R. Jones, Ed., AIAA Press, Washington, DC, 1993. 

Levis, A. H. "Human Interaction with Decision Aids: A Mathematical Approach," in Human/ 
Technology Interaction in Complex Systems, Vol. 7, W. B. Rouse, Ed., JAI Press; in press; 
to appear in 1994. 
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Zaidi, S. A. K., and A. H. Levis, "Algorithmic Design of Distributed Intelligence Systems," in 
Intelligent Control Systems: Theory and Practice, M. M. Gupta and N. K. Sinha, Eds., IEEE 
Press, in press, to appear in 1994. 

5.2.4 Papers or Reports in Non-refereed Journals 

Lam, N.T. and Lehner, P.E. "A Quantitative Approach to Predicting the Usefulness of a Decision 
Aid," Proc. 1992 IEEE International Conference on Systems, Man, and Cybernetics, October 
1992. 

Lu, Zhuo and A. H. Levis, "Coordination in Distributed Decision Making," Proc. 1992 IEEE 
International Conference on Systems, Man, and Cybernetics, October 1992. 

Zaidi, S. A. K. and A. H. Levis, "Algorithmic Design of Multilevel Organizational Structures," 
Proc. 1992 IEEE International Conference on Systems, Man, and Cybernetics, October 1992. 

Hoh, Y. S., D. M. Perdu, and A. H. Levis, "A Methodology of Evaluating the Copernicus 
Architecture Using Colored Petri Nets," Proc. 1993 Symposium on C2 Research, National 
Defense University, Ft. McNair, Washington, DC, June 1993. 

Ray, B. and A. H. Levis, "Functional Architecture for Crisis Management at the National 
Military Command Center," Proc. 1993 Symposium on C2 Research, National Defense 
University, Ft. McNair, Washington, DC, June 1993 . 

Perdu, D. M., S. A. K. Zaidi, A. Sadigh, P. Lehner, and A. H. Levis, "On a Methodology for 
Team Design UsingTnfluence Diagrams," Proc. 1993 Symposium on C2 Research, National 
Defense University, Ft. McNair, Washington, DC, June 1993. 

Sadigh, A., and Lehner, P. E., "The Complexity of Near-Optimal Decision Procedures," Proc. 
1993 Symposium on C2 Research, National Defense University, Ft. McNair, Washington, 
DC, June 1993. 

Lehner, P. E. and A. Sadigh, 'Two Procedures for Compiling Influence Diagrams, " Proc. 1993 
Conf. on Uncertainty in AI, Morgan Kaufmann, 1993. 

5.3  RESEARCH PERSONNEL 

The following persons participated in this effort during the three year period. 

Prof Paul Lehner GMU - Co-Principal Investigator 
Prof. Alexander H. Levis, GMU - Co-Principal Investigator 

Mr. Didier Perdu GMU - Graduate Student (PhD) 
Mr. Lee Wagenhals GMU - Graduate Student (PhD) 
Mr. Syed Abbas K. Zaidi GMU - Graduate Research Assistant (PhD) 
Ms. Tong Zhang GMU - Graduate Research Assistant (PhD) 

Ms. Zhenyi Jin GMU - Graduate Research Assistant (MS) 
Ms. Azar Sadigh GMU - Graduate Research Assistant (MS) 
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Mr. Mathew Christian 

Mr. N. Thomas Lam 
Mr. Zhuo Lu 

Mr. Bhashyam Nallappa 
Mr. Diwakar Prabhakar 

Mr. Ali R. Shah 

Mr. Mir-Masood Seyed-Solorforough 

GMU - Graduate Research Assistant (MS) 

GMU - Graduate Student (PhD) 
GMU - Graduate Research Assistant 

(MS received) 
GMU - Graduate Research Assistant (MS) 
GMU - Graduate Research Assistant 

(MS received) 
GMU - Graduate Research Assistant 

(MS received) 
GMU - Graduate Research Assistant (PhD) 

During the early stages of this research, a team from Decision Sciences Consortium (DSC) worked 
on the project under subcontract to GMU. However, the company was sold and the team was 
dispersed. Their contribution, however, is gratefully acknowledged. 

Dr. Kent Hull 
Dr. Martin Tolcott 
Dr. Theresa Mullin 
Dr. Michael O'Connor 
Mr. William Roman 
Mr. Steve Saks 

Dr. Michael Donnell 

DSC 
DSC - Consultant 
DSC 
DSC - P.I. of subcontract 
DSC - Programmer 
DSC - Programmer 

Consultant 
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